Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Kabra, Preetia; b; * | Rani, D. Sudhac
Affiliations: [a] Department of Electrical and Electronics Engineering, KLEF, Vijayawada, AP, India | [b] Deccan College of Engineering & Technology, Hyderabad, India | [c] Department of Electrical and Electronics Engineering, Sri Vasavi Engineering College, West Godavari, Andhra Pradesh, India
Correspondence: [*] Corresponding author. E-mail: [email protected].
Abstract: This manuscript proposes a hybrid technique for determining the optimal positioning of phasor measurement units (PMUs) in power systems. The PMUs play a crucial role in power system control, wide-area monitoring, and protection. The proposed hybrid method is the joint execution of the Lichtenberg algorithm (LA) and the heap-based optimization (HBO) technique. Hence, it is named the LA-HBO technique. The objective of the proposed method is to place the PMUs in the power system for observability. The goal is to enhance the efficiency and accuracy of PMU placement, ensuring optimal positioning for improved grid monitoring capabilities. The Lichtenberg Algorithm (LA) enhances PMU placement by addressing system observability challenges and ensuring that selected locations provide comprehensive coverage of the power grid. The heap-based approach optimizes PMU placement by efficiently managing the selection process, considering factors like computational efficiency and scalability. The proposed hybrid technique is implemented in IEEE-30 and -14 bus systems. The MATLAB-based simulation results are compared with the various existing methods, such as Sea Lion Optimization (SLO), Particle Swarm Optimization (PSO), and Ant Bee Colony Optimization (ABC). By then, the outcome reveals the efficacy of the proposed method for defining the optimum PMU locations. The proposed method shows a low computational time of 0.02348 sec for the IEEE-14 bus, and 0.03565 sec for the IEEE-30 bus compared with other existing methods.
Keywords: Wide area monitoring system (WAMS), phasor measurement unit, ideal location, synchrophasor technology, bus, test systems
DOI: 10.3233/JHS-230170
Journal: Journal of High Speed Networks, vol. 30, no. 3, pp. 427-443, 2024
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]