Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Selected papers of the 38th Conference of the German Society for Clinical Microcirculation and Hemorheology, 21-23 November 2019, Braunschweig, Germany
Guest editors: P. Wiggermann, A. Krüger-Genge and F. Jung
Article type: Research Article
Authors: Monteleone, Adrian | Schary, Weronika | Fath, Andreas | Wenzel, Folker; *
Affiliations: Faculty of Medical and Life Sciences, Hochschule Furtwangen, Germany
Correspondence: [*] Corresponding author: F. Wenzel, Faculty of Medical and Life Sciences, Hochschule Furtwangen, Germany. E-mail: [email protected].
Abstract: INTRODUCTION:Since the beginning of industrial production in 1950, plastic production has continued to grow strongly worldwide and is now at 322 million tonnes in the year 2015. From these very high production volumes ever larger quantities are found in the environment. There the plastics degradate to microplasticity and spread ubiquitously in the world. The present work deals with the possible uptake of microplastic particles in human organisms. For the detection of these plastic particles, an extraction method was developed and validated. MATERIALS AND METHODS:Biological materials consist of human blood (healthy volunteers, n = 4) and different tissues of pigs and cattles. Various lysis solutions were tested for degradation efficiency of biological material and for effects on the plastics. The mass loss, surfaces and structure variations as well as the physicochemical spectrum of the material were observed after treatment by atomic force (AFM) and electron microscopy (EM) and Fourier transform infrared spectrometry (FTIR). RESULTS:The different plastic types as polyamide (PA), polycarbonate (PC), polyethylene (PE), polypropylene (PP), polystyrene (PS) and polyvinyl chloride (PVC) could be clearly differentiated and identified by FTIR. Regarding the surface control, especially PVC showed detectable alterations: After extraction an irregular surface structure caused by protuberances or bubbles could be observed. However, instead of these alterations an equivalent count of plastic particles was found in correlation to the applied plastic amount (recovery rate overall was 99,12±0,67%). CONCLUSION:The applied method can be used for plastic extractions from human or animal tissues without remarkable effects on the plastics.
Keywords: Microplastic, microparticel, extraction method, human tissue
DOI: 10.3233/CH-199209
Journal: Clinical Hemorheology and Microcirculation, vol. 73, no. 1, pp. 203-217, 2019
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]