Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Selected papers of the 38th Conference of the German Society for Clinical Microcirculation and Hemorheology, 21-23 November 2019, Braunschweig, Germany
Guest editors: P. Wiggermann, A. Krüger-Genge and F. Jung
Article type: Research Article
Authors: Zou, Jiea; b | Wang, Weiweia | Nie, Yana | Xu, Xuna | Ma, Nana; b; * | Lendlein, Andreasa; b; c; *
Affiliations: [a] Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany | [b] Institute of Chemistry and Biochemistry, Free University of Berlin, Berlin, Germany | [c] Institute of Chemistry, University of Potsdam, Potsdam, Germany
Correspondence: [*] Corresponding authors: Prof. Dr. Nan Ma and Prof. Dr. Andreas Lendlein. E-mail: [email protected]; [email protected].
Abstract: Laminin-5 (Ln-5), an important extracellular matrix (ECM) protein, plays a critical role in regulating the growth and differentiation of mesodermal tissues, including bone. Ln-5 can be secreted by the mesenchymal stem cells (MSCs), and Ln-5 promotes MSCs osteogenic differentiation. It has been demonstrated that a substrate’s surface topography could regulate MSC secretion and differentiation. A better understanding of the mechanism of how Ln-5 and surface roughness regulate MSC osteogenic differentiation would guide the design of surface topography and coatings of orthopedic implants and cell culture substrates. However, few studies have investigated the relationship between surface roughness and the secretion of Ln-5 in MSC osteogenic differentiation. Whether substrate surface topography regulates MSC differentiation via regulating Ln-5 secretion and how surface topography contributes to the secretion of Ln-5 are still not known. In this study, the influence of microscale roughness at different levels (R0, R1 and R2) on the secretion of Ln-5 of human bone marrow MSCs (hBMSCs) and subsequent osteogenic differentiation were examined. hBMSCs spreading, distribution and morphology were greatly affected by different roughness levels. A significantly higher level of Ln-5 secretion was detected on R2, which correlated to the local cell density regulated by the rough surface. Ln-5 binding integrins (α2 and α3) were strongly activated on R2. In addition, the results from hBMSCs on R0 inserts with different cell densities further confirmed that local cell density regulated Ln-5 secretion and cell surface integrin activation. In addition, the mineralization level of MSCs on R2 was remarkably higher than that on R0 and R1. These results suggest that hBMSC osteogenic differentiation level on R2 roughness was enhanced via increased Ln-5 secretion that was attributed to rough surface regulated local cell density. Thus, the microroughness could serve as effective topographical stimulus in cell culture devices and bone implant materials.
Keywords: Mesenchymal stem cells, roughness, cell density, laminin-5, osteogenesis
DOI: 10.3233/CH-199205
Journal: Clinical Hemorheology and Microcirculation, vol. 73, no. 1, pp. 237-247, 2019
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]