Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Zhu, Jing | Kang, Jing | Li, Xiaochen | Wang, Mengmei | Shang, Min | Luo, Yuchuan | Xiong, Mengqing | Hu, Ke; *
Affiliations: Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
Correspondence: [*] Corresponding author: Dr. Ke Hu, Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, 430060 Wuhan, China. Tel.: +86 18 971035988; E-mail: [email protected].
Abstract: BACKGROUND AND AIM:Both chronic intermittent hypoxia (CIH) and chronic continuous hypoxia (CCH) are risk factors for cardiovascular disease, which are associated with cardiac systolic function and associated with dysfunction of endothelia and coagulation-fibrinolysis system in the vasculature. However, the different effects of these two hypoxic models are not fully understood. In our study, we systemically compared the effects of CIH and CCH on cardiac function and related factor levels in serum using rat model. METHODS:Forty-five male Sprague-Dawley rats were randomly divided into the normoxia control (NC), CIH and CCH groups. The rat CIH and CCH models were established, then the blood and tissue samples were collected to analyze the function of endothelium and the coagulation-fibrinolysis system. Also, the ultrasound cardiogram was performed to directly assess myocardial contractility. RESULTS:Both CIH and CCH significantly decreased the NO, eNOS, P-eNOS and AT-III levels in the rat serum but significantly increased the levels of ET-1, vWF, COX-2, NF-κB, FIB, FVIII and PAI-1 in the rat serum (P < 0.05). The expression of ET-1, VWF and ICAM-1 in CIH group were higher than CCH group (P < 0.05), however, the expression of CD62p was increased in CCH group but not in CIH group. The expression of t-PA in CIH group were lower than CCH group (P < 0.05), but there were no significant differences in CCH group and NC group (P > 0.05). Using transmission electron microscope, we found that the mitochondrial ultrastructure of thoracic aorta endothelial cells in CIH and CCH group were damaged. Moreover, the myocardial contractility in CIH and CCH group were significantly decreased compared with NC group. CONCLUSION:Our results suggested that CIH and CCH could cause endothelial dysfunction, dysfunction of the coagulation-fibrinolysis system and decreasing of myocardial contractility. Compared with CCH, CIH has greater effect on vasoconstriction and adhesion of vascular endothelial cells, and stronger procoagulant effect.
Keywords: Chronic intermittent hypoxia, chronic continuous hypoxia, vascular endothelial function, myocardial contractility
DOI: 10.3233/CH-190706
Journal: Clinical Hemorheology and Microcirculation, vol. 74, no. 4, pp. 417-427, 2020
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]