Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Ulker, Pinar | Gunduz, Filiz | Meiselman, Herbert J. | Baskurt, Oguz K.
Affiliations: Department of Physiology, Faculty of Medicine, Akdeniz University, Antalya, Turkey | Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA | School of Medicine, Koc University, Istanbul, Turkey
Note: [] Diseased.
Abstract: Red blood cells (RBC) possess a functional nitric oxide synthase (NOS) enzyme located in the cell membrane and cytoplasm. It has previously been observed that shear stress acting on RBC activates NOS and causes enhanced NO export. The aim of the present study was to investigate the physiological importance (e.g., in local blood flow regulation) of RBC-derived NO stimulated by application of shear stress. Blood samples and arterial vessel segments were obtained from Wistar rats; RBC suspensions were adjusted to a hematocrit of 0.1 l/l using Krebs solution. In order to apply shear stress to the RBC suspensions they were continuously flowed through a small-bore glass tube for 20 minutes at a wall shear stress of 2 Pa. The RBC suspensions were then perfused through endothelium denuded small mesenteric arteries having a diameter of ~300 μm under both high oxygen (PO2 ~130 mmHg) and hypoxic conditions. Perfusion of vessel segments with sheared RBC suspensions caused a significant dilation response under hypoxic conditions but not at high oxygen levels. Incubation of RBC suspensions with the non-specific NOS inhibitor L-NAME (10−3 M) prior to shear stress application abolished this dilation response. Our results indicate that NO released from RBC due to shear stress activation of NOS results in vasodilation of vessel segments under hypoxic conditions, and strongly suggest that NO originating from RBC may have a functional role in local blood flow regulation.
Keywords: Erythrocyte NOS, mechanical stimulation, NOS activation, blood flow regulation
DOI: 10.3233/CH-2012-1618
Journal: Clinical Hemorheology and Microcirculation, vol. 54, no. 4, pp. 357-369, 2013
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]