Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Selected Proceedings of the 16th Conference of the European Society for Clinical Hemorheology and Microcirculation (ESCHM), 18–21 June, 2011, Munich, Germany
Article type: Research Article
Authors: Baskurt, Oguz K. | Ulker, Pinar | Meiselman, Herbert J.
Affiliations: School of Medicine, Koc University, Istanbul, Turkey | Department of Physiology, Faculty of Medicine, Akdeniz University, Antalya, Turkey | Department of Physiology and Biophysics, Keck School of Medicine, University of Southern, California, Los Angeles, CA, USA
Note: [] Corresponding author: Oguz K. Baskurt, School of Medicine, Koc University, Sariyer, Istanbul, 34450, Turkey. Tel.: +90 212 338 1160; Fax: +90 212 338 1168; E-mail: [email protected]
Abstract: Nitric oxide (NO) is accepted to be an important factor affecting the degree of vascular tone in various portions of the circulation. Until recently, research in this area has focused on endothelial cells as a NO source, and there is general agreement that: 1) the level of wall shear stress is the primary determinant of endothelial nitric oxide synthase (eNOS) expression; 2) exercise training induces changes of endothelial cell NO synthesizing activity; 3) phosphorylation patterns of eNOS are altered following exercise episodes. However, there is now a growing body of evidence for the existence of similar nitric oxide synthesizing mechanisms in human red blood cells (RBC). Erythrocyte NOS activity has been demonstrated to be induced by applied shear stress and mechanical deformation of RBC, and there are closely linked increases of intracellular nitric oxide levels and of release of NO into the suspending phase. In brief, the RBC is an enzymatic source of NO that is dependent on flow dynamics and from which NO is released in very close proximity to vessel walls. Although reports regarding the influence of exercise on RBC nitric oxide synthesizing mechanisms are not yet concordant, it seems logical to suggest that this source of NO may play a role in the regulation of local blood flow dynamics during exercise.
Keywords: Nitric oxide, exercise, shear stress, eNOS, phosphorylation
DOI: 10.3233/CH-2011-1467
Journal: Clinical Hemorheology and Microcirculation, vol. 49, no. 1-4, pp. 175-181, 2011
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]