Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Purchase individual online access for 1 year to this journal.
Price: EUR 410.00Impact Factor 2024: 0.4
Fundamenta Informaticae is an international journal publishing original research results in all areas of theoretical computer science. Papers are encouraged contributing:
- solutions by mathematical methods of problems emerging in computer science
- solutions of mathematical problems inspired by computer science.
Topics of interest include (but are not restricted to): theory of computing, complexity theory, algorithms and data structures, computational aspects of combinatorics and graph theory, programming language theory, theoretical aspects of programming languages, computer-aided verification, computer science logic, database theory, logic programming, automated deduction, formal languages and automata theory, concurrency and distributed computing, cryptography and security, theoretical issues in artificial intelligence, machine learning, pattern recognition, algorithmic game theory, bioinformatics and computational biology, quantum computing, probabilistic methods, & algebraic and categorical methods.
Authors: Barylska, Kamila | Gogolińska, Anna
Article Type: Research Article
Abstract: Reversible computations constitute an unconventional form of computing where any sequence of performed operations can be undone by executing in reverse order at any point during a computation. It has been attracting increasing attention as it provides opportunities for low-power computation, being at the same time essential or eligible in various applications. In recent work, we have proposed a structural way of translating Reversing Petri Nets (RPNs) – a type of Petri nets that embeds reversible computation, to bounded Coloured Petri Nets (CPNs) – an extension of traditional Petri Nets, where tokens carry data values. Three reversing semantics are possible …in RPNs: backtracking (reversing of the lately executed action), causal reversing (action can be reversed only when all its effects have been undone) and out of causal reversing (any previously performed action can be reversed). In this paper, we extend the RPN to CPN translation with formal proofs of correctness. Moreover, the possibility of introduction of cycles to RPNs is discussed. We analyze which type of cycles could be allowed in RPNs to ensure consistency with the current semantics. It emerged that the most interesting case related to cycles in RPNs occurs in causal semantics, where various interpretations of dependency result in different net’s behaviour during reversing. Three definitions of dependence are presented and discussed. Show more
DOI: 10.3233/FI-2021-2099
Citation: Fundamenta Informaticae, vol. 184, no. 4, pp. 273-296, 2021
Authors: Darkey-Mensah, Mawunyo Kofi | Rothkegel, Beata
Article Type: Research Article
Abstract: This paper presents algorithms for computing the length of a sum of squares and a Pythagoras element in a global field K of characteristic different from 2. In the first part of the paper, we present algorithms for computing the length in a non-dyadic and dyadic (if K is a number field) completion of K . These two algorithms serve as subsidiary steps for computing lengths in global fields. In the second part of the paper we present a procedure for constructing an element whose length equals the Pythagoras number of a global field, termed a Pythagoras element.
Keywords: Algorithms, Quadratic forms, Global fields, Length, Sum of squares, Pythagoras number, Pythagoras element, MSC: 11Y16, 11E12
DOI: 10.3233/FI-2021-2100
Citation: Fundamenta Informaticae, vol. 184, no. 4, pp. 297-306, 2021
Authors: Šíma, Jiří | Žák, Stanislav
Article Type: Research Article
Abstract: Recently, an interest in constructing pseudorandom or hitting set generators for restricted branching programs has increased, which is motivated by the fundamental issue of derandomizing space-bounded computations. Such constructions have been known only in the case of width 2 and in very restricted cases of bounded width. In this paper, we characterize the hitting sets for read-once branching programs of width 3 by a so-called richness condition. Namely, we show that such sets hit the class of read-once conjunctions of DNF and CNF (i.e. the weak richness). Moreover, we prove that any rich set extended with all strings within Hamming …distance of 3 is a hitting set for read-once branching programs of width 3. Then, we show that any almost O (log n )-wise independent set satisfies the richness condition. By using such a set due to Alon et al. (1992) our result provides an explicit polynomial-time construction of a hitting set for read-once branching programs of width 3 with acceptance probability ɛ > 5/6. We announced this result at conferences more than ten years ago, including only proof sketches, which motivated a number of subsequent results on pseudorandom generators for restricted read-once branching programs. This paper contains our original detailed proof that has not been published yet. Show more
Keywords: derandomization, hitting set, read-once branching program, bounded width, almost k-wise independent set
DOI: 10.3233/FI-2021-2101
Citation: Fundamenta Informaticae, vol. 184, no. 4, pp. 307-354, 2021
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]