Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Purchase individual online access for 1 year to this journal.
Price: EUR 420.00Impact Factor 2024: 1.1
The journal Asymptotic Analysis fulfills a twofold function. It aims at publishing original mathematical results in the asymptotic theory of problems affected by the presence of small or large parameters on the one hand, and at giving specific indications of their possible applications to different fields of natural sciences on the other hand.
Asymptotic Analysis thus provides mathematicians with a concentrated source of newly acquired information which they may need in the analysis of asymptotic problems.
Authors: Servat, E.
Article Type: Research Article
Abstract: On s'intéresse à l'existence et à la localisation des résonances pour l'opérateur de Schrödinger semi‐classique unidimensionnel, dans le cas de puits multiple dans une île. On obtient en particulier une condition géométrique pour la transition entre le croisement et l'anti‐croisement des résonances dans le cas de deux puits de potentiel.
Citation: Asymptotic Analysis, vol. 39, no. 3-4, pp. 187-224, 2004
Authors: Dkhil, F. | Logak, E. | Nishiura, Y.
Article Type: Research Article
Abstract: We consider the Gray–Scott model for cubic autocatalysis. We prove nonexistence results on stationary and travelling pulse solutions for some domain of parameters. We obtain an explicit travelling front in the one dimensional case for equal diffusivities and equal transformation rates of the reactants. We prove that travelling fronts continue to exist near the equal diffusivities and equal transformation rates case. We also provide numerical simulations illustrating our results.
Keywords: Gray–Scott model, reaction–diffusion system, travelling pulse, travelling front, self‐replicating patterns, autocatalysis
Citation: Asymptotic Analysis, vol. 39, no. 3-4, pp. 225-261, 2004
Authors: Benchérif‐Madani, A. | Pardoux, É.
Article Type: Research Article
Abstract: In this paper, two linear second PDEs are homogenized. The coefficients are supposed to be locally periodic, Lipschitz and bounded. Compared to our previous work [1], we provide a new and simpler proof and weaken the hypotheses of the main theorem. We use both probabilistic and analytic arguments.
Keywords: homogenization, parabolic PDE, Poisson equation, diffusion approximation
Citation: Asymptotic Analysis, vol. 39, no. 3-4, pp. 263-279, 2004
Authors: Braides, Andrea | Piat, Valeria Chiadò | Piatnitski, Andrey
Article Type: Research Article
Citation: Asymptotic Analysis, vol. 39, no. 3-4, pp. 281-308, 2004
Authors: Fedotov, Alexander | Klopp, Frédéric
Article Type: Research Article
Abstract: The paper is devoted to the description of the main geometric and analytic tools of a complex WKB method for adiabatic problems. We illustrate their use by numerous examples. Résumé. L'article est consacré à la description des principaux outils géométriques et analytiques d'une méthode WKB complexe pour des problèmes adiabatiques. Nous illustrons leur utilisation par de nombreux exemples.
Keywords: periodic Schrödinger equation, adiabatic perturbations, asymptotics of solutions, complex WKB method
Citation: Asymptotic Analysis, vol. 39, no. 3-4, pp. 309-357, 2004
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]