Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Purchase individual online access for 1 year to this journal.
Price: EUR 420.00Impact Factor 2024: 1.1
The journal Asymptotic Analysis fulfills a twofold function. It aims at publishing original mathematical results in the asymptotic theory of problems affected by the presence of small or large parameters on the one hand, and at giving specific indications of their possible applications to different fields of natural sciences on the other hand.
Asymptotic Analysis thus provides mathematicians with a concentrated source of newly acquired information which they may need in the analysis of asymptotic problems.
Authors: Pelinovsky, Dmitry E. | Sobieszek, Szymon
Article Type: Research Article
Abstract: Ground state of the energy-critical Gross–Pitaevskii equation with a harmonic potential can be constructed variationally. It exists in a finite interval of the eigenvalue parameter. The supremum norm of the ground state vanishes at one end of this interval and diverges to infinity at the other end. We explore the shooting method in the limit of large norm to prove that the ground state is pointwise close to the Aubin–Talenti solution of the energy-critical wave equation in near field and to the confluent hypergeometric function in far field. The shooting method gives the precise dependence of the eigenvalue parameter versus …the supremum norm. Show more
Keywords: Gross–Pitaevskii equation, ground state, energy-critical case, shooting method
DOI: 10.3233/ASY-241897
Citation: Asymptotic Analysis, vol. 139, no. 1-2, pp. 1-29, 2024
Authors: Kassan, Mouna | Carbou, Gilles | Jazar, Mustapha
Article Type: Research Article
Abstract: In this paper, we establish the existence of global-in-time weak solutions for the Landau–Lifschitz–Gilbert equation with magnetostriction in the case of mixed boundary conditions. From this model, we derive by asymptotic method a two-dimensional model for thin ferromagnetic plates taking into account magnetostrictive effects.
Keywords: Ferromagnetism, magnetostriction, weak solutions, thin plates
DOI: 10.3233/ASY-241899
Citation: Asymptotic Analysis, vol. 139, no. 1-2, pp. 31-59, 2024
Authors: Liu, Jitao | Wang, Shasha | Xu, Wen-Qing
Article Type: Research Article
Abstract: Recently, Niche [J. Differential Equations, 260 (2016), 4440–4453] established upper bounds on the decay rates of solutions to the 3D incompressible Navier–Stokes–Voigt equations in terms of the decay character r ∗ of the initial data in H 1 ( R 3 ) . Motivated by this work, we focus on characterizing the large-time behavior of all space-time derivatives of the solutions for the 2D case and establish upper bounds and lower bounds on their decay rates by making use of the decay character and Fourier splitting …methods. In particular, for the case − n 2 < r ∗ ⩽ 1 , we verify the optimality of the upper bounds, which is new to the best of our knowledge. Similar improved decay results are also true for the 3D case. Show more
Keywords: Incompressible Navier–Stokes–Voigt equations, decay characterization, Fourier splitting, large-time behavior
DOI: 10.3233/ASY-241900
Citation: Asymptotic Analysis, vol. 139, no. 1-2, pp. 61-87, 2024
Authors: Huo, Wenwen | Teng, Kaimin | Zhang, Chao
Article Type: Research Article
Abstract: We consider the Cauchy problem for the 3-D incompressible Navier–Stokes–Allen–Cahn system, which can effectively describe large deformations or topological deformations. Under the assumptions of small initial data, we study the global well-posedness and time-decay of solutions to such system by means of pure energy method and Fourier-splitting technique.
Keywords: Navier–Stokes–Allen–Cahn, global well-posedness, time-decay, Fourier-splitting
DOI: 10.3233/ASY-241901
Citation: Asymptotic Analysis, vol. 139, no. 1-2, pp. 89-109, 2024
Authors: Nika, Grigor | Muntean, Adrian
Article Type: Research Article
Abstract: We derive effective models for a heterogeneous second-gradient elastic material taking into account chiral scale-size effects. Our classification of the effective equations depends on the hierarchy of four characteristic lengths: The size of the heterogeneities ℓ , the intrinsic lengths of the constituents ℓ SG and ℓ chiral , and the overall characteristic length of the domain L. Depending on the different scale interactions between ℓ SG , ℓ chiral , ℓ , and L we obtain either an …effective Cauchy continuum or an effective second-gradient continuum. The working technique combines scaling arguments with the periodic homogenization asymptotic procedure. Both the passage to the homogenization limit and the unveiling of the correctors’ structure rely on a suitable use of the periodic unfolding operator. Show more
Keywords: Second-gradient elasticity, scale-size effects, partial scale separation, chirality, multi-continuum homogenization
DOI: 10.3233/ASY-241902
Citation: Asymptotic Analysis, vol. 139, no. 1-2, pp. 111-137, 2024
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]