Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Wu, Lipenga; b | Zhang, Wenweib; | Song, Xianjinc | Liu, Guoqiangb | Liu, Jingb | Xia, Huib | Fan, Liguoc
Affiliations: [a] School of Electric Power, Civil Engineering and Architecture, Shanxi University, Taiyuan, China | [b] Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, China | [c] School of Electric Power, Civil Engineering and Architecture, Shanxi University, Taiyuan, China
Correspondence: [*] Corresponding author: Wenwei Zhang, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China. E-mail: [email protected]
Abstract: Conventional low-frequency electromagnetic wave (LFEM) transmitting antennas are enormous in size, which limits the application of LFEM in underground space. Rotating-magnet Based Mechanical Antennas can realize the miniaturization of low-frequency antennas, which is expected to bring new possibilities for underground electromagnetic detection or ground penetration communication. Firstly, this paper establishes a synthetic field method for solving the electromagnetic field of a rotating permanent magnet in the air-earth cross-domain case. The method equates the magnet as an orthogonal superposition of vertical and horizontal dipole sources, and the phase difference between vertical and horizontal dipole sources is 𝜋/2. Based on the half-space theory of multilayer planar media, the quasi-analytical solution of the electromagnetic field of the magnetic dipole in the case of air-earth trans dimensionality can be found by superposition. Secondly, based on the finite element numerical model, the trans-earth propagation characteristics of the electromagnetic field excited by the rotating permanent magnet across the air-earth dual domain are studied. At the same time, the radiation characteristics in the rotating plane of the permanent magnet are also studied. Again, this paper systematically investigates the influence of parameters such as earth conductivity, emission frequency, and propagation distance on the electromagnetic field propagation. Finally, the principle prototype is developed and experiments are carried out. The results show that the finite element numerical model established in this paper is correct, the experimental results are consistent with the theoretical values, and a field strength signal of 0.9 nT can be received at 20 m. The research work in this paper lays the foundation for the future use of mechanical antennas for electromagnetic detection and ground penetration communication.
Keywords: Rotating-magnet based mechanical antenna, through-the-earth communication, homogeneous half space
DOI: 10.3233/JAE-230080
Journal: International Journal of Applied Electromagnetics and Mechanics, vol. 74, no. 2, pp. 123-139, 2024
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]