Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Yang, Xiaolonga; | Shi, Miaoa | Zhang, Ruiboa | Zhou, Shiyinga
Affiliations: [a] School of Mechanical Engineering, Guangxi University of Science and Technology, Liuzhou, Guangxi, China
Correspondence: [*] Corresponding author: Xiaolong Yang, School of Mechanical Engineering, Guangxi University of Science and Technology, Liuzhou, Guangxi, China. E-mail: [email protected]
Abstract: Herein, a divergent stepped magnetic fluid seal with a single magnetic source is designed to improve the pressure capability of ordinary magnetic fluid seal under small clearance. To explore the effects of injection volume, axial clearance, radial clearance, axial tooth number and radial tooth number on divergent stepped magnetic fluid seal, the pressure capability of magnetic fluid seal with an ordinary structure was comparatively analyzed through experimentation. According to the experimental results, there is no leakage or ejection of magnetic fluid from the sealing device when the critical pressure of divergent stepped magnetic fluid sealing is reached. The divergent stepped magnetic fluid seal structure performs better in pressure resistance the magnetic fluid seal with an ordinary structure. Also, the existence of axial teeth in the stepped magnetic fluid sealing structure leads to an increase in polar teeth, which not only extends the leakage path of the sealing medium but also exacerbates energy loss for the magnetic fluid carried by the sealed medium. This is effective in improving the pressure resistance of the magnetic fluid seal. When the axial tooth number reaches or exceeds the radial tooth number and the axial clearance falls below the radial clearance, the divergent stepped magnetic fluid seal with small clearance has a pressure capability that is 4.1–6 times higher than the critical pressure of ordinary magnetic fluid seal. When the axial clearance exceeds the radial clearance and the axial tooth number falls below the radial tooth number, the divergent stepped magnetic fluid seal has a critical pressure that is 1.9–3.6 times higher than that of conventional magnetic fluid seal.
Keywords: Small clearance, stepped type, magnetic fluid seal, experimental study, pressure capability
DOI: 10.3233/JAE-220068
Journal: International Journal of Applied Electromagnetics and Mechanics, vol. 71, no. 2, pp. 117-132, 2023
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]