Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Liu, Chuana; | Chen, Renwena | Zhang, Yuxianga | Liu, Wena | Wang, Lipinga | Qin, Jinchanga
Affiliations: [a] State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, China
Correspondence: [*] Corresponding author: Chuan Liu, State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China. E-mail: [email protected]
Abstract: As a renewable energy, ocean wave energy is exploited with infinite potential to solve the energy crisis. In this study, we develop a novel two-body direct-drive wave energy converter (DD-WEC) to surmount the problems associated with low power density, low direct-drive speed of the buoys, seawater corrosion and maintenance in the existing two-body WEC. Its prototype consists of two cylindrical buoys that float horizontally at sea level and the Halbach permanent magnet linear generator (HPMLG) that is employed in the power take-off (PTO) system. The energy is extracted from the relative motion between two buoys oscillating. Compared with the existing WEC, the proposed WEC has more vigorous motion between buoys, higher conversion efficiency and little extra underwater structure, due to the utilization of the horizontal buoys and the HPMLG. First, the motion equations of buoys are derived on the basis of linear wave theory. And depending on the motion equations, the structure of buoys and the HPMLG is designed. And we found that compared with the existing WEC, the proposed WEC has more vigorous motion between buoys in the seawater waves oscillation. Then, based on finite-element method (FEM), the performance of the HPMLG is evaluated, and it can generate 19% more power than the traditional permanent magnet linear generator (TPMLG) based on the same wave motion. Finally, the DD-WEC prototype is manufactured based on the designed parameter. The manufactured prototype is tested in the test platform and the wave tank. The measured output voltage is highly consistent with the observed variation trends in FEM simulation data. The results show that the proposed DD-WEC is well suited for wave energy conversion.
Keywords: DD-WEC, HPMLG, two cylindrical buoys, motion equations of the buoys, performance analysis
DOI: 10.3233/JAE-201500
Journal: International Journal of Applied Electromagnetics and Mechanics, vol. 65, no. 3, pp. 527-544, 2021
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]