Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Zhang, Yunfenga | Gu, Jialianga; | Zhang, Erchuna
Affiliations: [a] Key Laboratory of Meteorological Disaster, Ministry of Education (KLME), Joint International Research Laboratory of Climate and Environment Change (ILCEC), Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science & Technology, Nanjing, China
Correspondence: [*] Corresponding author: Jialiang Gu, Nanjing University of Information Science & Technology, Nanjing 210044, China. E-mail: [email protected]
Abstract: Studying underground propagation effects of lightning electromagnetic fields in different geological environments will contribute to more reasonable designs for protecting underground cables and electronic equipment. In this paper, we have analyzed influences of different geological environments, depths and soil water content on underground propagation of lightning electromagnetic fields in detail by using the finite difference time domain (FDTD) method in the 2-D cylindrical coordinate system to calculate components of underground electromagnetic fields at a horizontal distance of 200 m, including vertical electric field Ez, horizontal electric field Er and azimuthal magnetic field H𝜑. The results show that the underground electric field is predominantly horizontal. Propagation of lightning electromagnetic fields in wet clay and wet limestone environment changes significantly compared to freshwater environment. Attenuation is larger with depth in wet clay and wet limestone, while propagation is unaffected in freshwater. When water content in soils ranges from 5% to 25%, the vertical electric field has the largest attenuation and the azimuthal magnetic field has the least attenuation. The electromagnetic fields in clay are most sensitive to changes in water content.
Keywords: FDTD, lightning electromagnetic fields, different geological environments, water content, underground propagation
DOI: 10.3233/JAE-190112
Journal: International Journal of Applied Electromagnetics and Mechanics, vol. 62, no. 4, pp. 861-873, 2020
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]