Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Yuan, Qiana | Han, Bangchenga; b; * | Dong, Baotiana
Affiliations: [a] School of Instrument Science and Optoelectronics Engineering, Beihang University, Beijing, China | [b] Science and Technology on Inertial Laboratory, Beijing, China
Correspondence: [*] Corresponding author: Bangcheng Han, School of Instrument Science and Optoelectronics Engineering, Beihang University, Beijing 100191, China. E-mail: [email protected]
Abstract: In order to find an algorithm to get a better optimization result of high-speed rotor supported by magnetic bearing in BLDCM, we presented a multiple objective optimization results which included three algorithms' in this paper. They are the local Sequential Quadratic Program (SQP) algorithm, the global Genetic Algorithm (GA) and the combined optimization strategy algorithm which combines GA and SQP. The parametric optimization model of a 100 kW BLDCM supported by magnetic bearings was constituted with software ANSYS and an effective connection between software ANSYS and iSIGHT was used to execute the whole optimization process. To insure the best performance, mass and strength were chosen as the optimization goals, meanwhile, the static strength, dynamic modal, shape and magnetic force of the rotor subassembly were used as the main constrains. Six main dimensions of the subassembly were optimized. The optimization results indicated that the GA can get a higher optimization precision than the other two algorithms and the SQP was not effective in the optimization of magnetic suspended motor rotor subassembly. The GA's optimization result made the mass decrease 7.62 percent with the safe factor is 3.15. The 100 kW BLDCM supported by magnetic bearings was designed and fabricated; the multiple objective optimization results were verified by the prototype.
Keywords: Magnetic suspension motor, optimization, genetic algorithm, combined optimization strategy, static strength and dynamic modal
DOI: 10.3233/JAE-141963
Journal: International Journal of Applied Electromagnetics and Mechanics, vol. 46, no. 3, pp. 663-673, 2014
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]