Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Singh, R.K.a
Affiliations: [a] Bharat Sanchar Nigam Ltd, Nodal Cell WiMAX, TPT Nagar, Ludhiana, Punjab, India. E-mail: [email protected]
Abstract: A circular waveguide with axially periodic thin metal disc inserts for its potential application in a gyro-TWT has been investigated for dispersion, form factor, power flowing through the structure, interaction impedance, and gain. The structure has been field analysed for its dispersion characteristics with due care to include the rigour of considering the effect of higher order space and modal harmonics. Dispersion characteristics reveal that the structure under study has like band-pass characteristics. Effect of variation of structure parameters on the dispersion characteristics has been observed in order to shape the waveguide-mode curve for wideband operation of the device. With the help of form factor which decides the extent of coupling between beam and wave, optimum beam position has been decided where maximum interaction between beam and wave takes place. For the structure under study, the value of azimuthal interaction impedance increases with the introduction of metal discs in the waveguide except at higher frequencies, where it decreases rapidly to a value that is lower than that for a smooth-wall circular waveguide. Gain-frequency response observation shows that the dispersion characteristics are readily reflected in the gain-frequency response. It has been found that the disc-hole radius is more effective in controlling the device gain while it is disc-periodicity which is the most effective structure parameter in controlling the device bandwidth. Results have been verified against published results and found to be in very close agreement.
Keywords: Dispersion, form factor, gain, gyro-TWT, interaction impedance, periodic structures
DOI: 10.3233/JAE-131657
Journal: International Journal of Applied Electromagnetics and Mechanics, vol. 42, no. 2, pp. 201-214, 2013
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]