Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Intelligent Data Analysis in Granular Computing
Article type: Research Article
Authors: Lu, Kun-Che | Yang, Don-Lin
Affiliations: Department of Information Engineering and Computer Science, Feng Chia University, 100 Wen Hwa Road, Taichung, Taiwan. E-mail: [email protected]; [email protected]
Abstract: Clustering is useful for mining the underlying structure of a dataset in order to support decision making since target or high-risk groups can be identified. However, for high dimensional datasets, the result of traditional clustering methods can be meaningless as clusters may only be depicted with respect to a small part of features. Taking customer datasets as an example, certain customers may correlate with their salary and education, and the others may correlate with their job and house location. If one uses all the features of a customer for clustering, these local-correlated clusters may not be revealed. In addition, processing high dimensions and large datasets is a challenging problem in decision making. Searching all the combinations of every feature with every record to extract local-correlated clusters is infeasible, which is in exponential scale in terms of data dimensionality and cardinality. In this paper, we propose a scalable 2-Leveled Approximated Hyper-Image-based Clustering framework, referred as 2L-HIC-A, for mining local-correlated clusters, where each level clustering process requires only one scan of the original dataset. Moreover, the data-processing time of 2L-HIC-A can be independent of the input data size. In 2L-HIC-A, various well-developed image processing techniques can be exploited for mining clusters. In stead of proposing a new clustering algorithm, our framework can accommodate other clustering methods for mining local-corrected clusters, and to shed new light on the existing clustering techniques.
Keywords: local-correlated cluster, approximated clustering, high dimension, large dataset, image processing, morphology
DOI: 10.3233/FI-2010-214
Journal: Fundamenta Informaticae, vol. 98, no. 1, pp. 15-32, 2010
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]