Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Waszkiewicz, Paweł
Affiliations: Theoretical Computer Science, Jagiellonian University, ul. Gronostajowa 3, 30-387 Kraków, Poland. [email protected]
Note: [] Address for correspondence: Theoretical Computer Science, Jagiellonian University, ul. Gronostajowa 3, 30-387 Kraków, Poland
Abstract: This paper is about a generalization of Scott's domain theory in such a way that its definitions and theorems become meaningful in quasimetric spaces. The generalization is achieved by a change of logic: the fundamental concepts of original domain theory (order, way-below relation, Scott-open sets, continuous maps, etc.) are interpreted as predicates that are valued in an arbitrary completely distributive Girard quantale (a CDG quantale). Girard quantales are known to provide a sound and complete semantics for commutative linear logic, and complete distributivity adds a notion of approximation to our setup. Consequently, in this paper we speak about domain theory based on commutative linear logic with some additional reasoning principles following from approximation between truth values. Concretely, we: (1) show how to define continuous Q-domains, i.e. continuous domains over a CDG quantale Q; (2) study their way-below relation, and (3) study the rounded ideal completion of Q-abstract bases. As a case study, we (4) demonstrate that the domain-theoretic construction of the Hoare, Smyth and Plotkin powerdomains of a continuous dcpo can be straightforwardly adapted to yield corresponding constructions for continuous Q-domains.
Keywords: (generalized) continuous domains, (generalized) way-below relation, rounded ideal completion
DOI: 10.3233/FI-2009-0071
Journal: Fundamenta Informaticae, vol. 92, no. 1-2, pp. 169-192, 2009
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]