Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Li, Yancang | Li, Wanqing
Affiliations: College of Civil Engineering Hebei University of Engineering Handan, 056038, China. E-mail: [email protected]
Abstract: In order to solve the premature convergence problem of the basic Ant Colony Optimization algorithm, a promising modification based on the information entropy is proposed. The main idea is to evaluate stability of the current space of represented solutions using information entropy, which is then applied to turning of the algorithm's parameters. The path selection and evolutional strategy are controlled by the information entropy self-adaptively. Simulation study and performance comparison with other Ant Colony Optimization algorithms and other meta-heuristics on Traveling Salesman Problem show that the improved algorithm, with high efficiency and robustness, appears self -adaptive and can converge at the global optimum with a high probability. The work proposes a more general approach to evolutionary-adaptive algorithms related to the population's entropy and has significance in theory and practice for solving the combinatorial optimization problems.
Keywords: Ant Colony Optimization, modification, information entropy, self-adaptive, Traveling Salesman Problem
Journal: Fundamenta Informaticae, vol. 77, no. 3, pp. 229-242, 2007
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]