Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: The 9th International Conference on Rough Sets, Fuzzy Sets, Data Mining and Granular Conputing (RSFDGrC 2003)
Article type: Research Article
Authors: Mazlack, Lawrence J.
Affiliations: Applied Artificial Intelligence Laboratory, ECECS Department, University of Cincinnati, Cincinnati, OH 45221, USA
Abstract: Causal reasoning is important to human reasoning. It plays an essential role in day-to-day human decision-making. Human understanding of causality is necessarily imprecise, imperfect, and uncertain. Soft computing methods may be able to provide the approximation tools needed. In order to algorithmically consider causes, imprecise causal models are needed. A difficulty is striking a good balance between precise formalism and imprecise reality. Determining causes from available data has been a goal throughout human history. Today, data mining holds the promise of extracting unsuspected information from very large databases. The most common methods build rules. In many ways, the interest in rules is that they offer the promise (or illusion) of causal, or at least, predictive relationships. However, the most common rule form (association rules) only calculates a joint occurrence frequency; they do not express a causal relationship. If causal relationships could be discovered, it would be very useful.
Keywords: causality, causal models, data mining
Journal: Fundamenta Informaticae, vol. 59, no. 2-3, pp. 191-201, 2004
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]