Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Midelfart, Herman | Komorowski, Jan; | Nørsett, Kristin | Yadetie, Fekadu | Sandovik, Arne K. | Lægreid, Astrid
Affiliations: Department of Computer and Information Science, Norwegian University of Science and Technology, N-7491 Trondheim, Norway | The Linnaeus Centre for Bioinformatics, Uppsala University, BMC Box 598, SE-751 24 Uppsala, Sweden | Department of Physiology and Biomedical Engineering, Norwegian University of Science and Technology, N-7489 Trondheim, Norway
Abstract: Biological research is currently undergoing a revolution. With the advent of microarray technology the behavior of thousands of genes can be measured simultaneously. This capability opens a wide range of research opportunities in biology, but the technology generates a vast amount of data that cannot be handled manually. Computational analysis is thus a prerequisite for the success of this technology, and research and development of computational tools for microarray analysis are of great importance. One application of microarray technology is cancer studies where supervised learning may be used for predicting tumor subtypes and clinical parameters. We present a general Rough Set approach for classification of tumor samples analyzed with microarrays. This approach is tested on a data set of gastric tumors, and we develop classifiers for six clinical parameters. One major obstacle in training classifiers from microarray data is that the number of objects is much smaller that the number of attributes. We therefore introduce a feature selection method based on bootstrapping for selecting genes that discriminate significantly between the classes, and study the performance of this method. Moreover, the efficacy of several learning and discretization methods implemented in the ROSETTA system [18] is examined. Their performance is compared to that of linear and quadratic discrimination analysis. The classifiers are also biologically validated. One of the best classifiers is selected for each clinical parameter, and the connection between the genes used in these classifiers and the parameters are compared to the establish knowledge in the biomedical literature.
Keywords: Rough Set, ROSETTA, Gene Expression, cDNA Microarray
Journal: Fundamenta Informaticae, vol. 53, no. 2, pp. 155-183, 2002
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]