Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Special Issue on Deep Neural Networks for Digital Media Algorithms
Guest editors: Wladyslaw SkarbekProf. and Yu-Dong ZhangProf.
Article type: Research Article
Authors: Tautkutė, Ivonaa; * | Trzciński, Tomaszb
Affiliations: [a] Polish-Japanese Academy of Information Technology, Tooploox, Warsaw, Poland. [email protected] | [b] Warsaw University of Technology, Tooploox, Warsaw, Poland. [email protected]
Correspondence: [*] Address for correspondence: Polish-Japanese Academy of Information Technology, Tooploox, Warsaw, Poland
Abstract: Classification of human emotions remains an important and challenging task for many computer vision algorithms, especially in the era of humanoid robots which coexist with humans in their everyday life. Currently proposed methods for emotion recognition solve this task using multi-layered convolutional networks that do not explicitly infer any facial features in the classification phase. In this work, we postulate a fundamentally different approach to solve emotion recognition task that relies on incorporating facial landmarks as a part of the classification loss function. To that end, we extend a recently proposed Deep Alignment Network (DAN) with a term related to facial features. Thanks to this simple modification, our model called EmotionalDAN is able to outperform state-of-the-art emotion classification methods on two challenging benchmark dataset by up to 5%. Furthermore, we visualize image regions analyzed by the network when making a decision and the results indicate that our EmotionalDAN model is able to correctly identify facial landmarks responsible for expressing the emotions.
Keywords: machine learning, emotion recognition, facial expression recognition
DOI: 10.3233/FI-2019-1832
Journal: Fundamenta Informaticae, vol. 168, no. 2-4, pp. 269-285, 2019
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]