Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Pal, Sankar K. | Kundu, Suman | Murthy, C.A.
Affiliations: Center for Soft Computing Research, Indian Statistical Institute, Kolkata, India. [email protected]; [email protected]; [email protected]
Note: [] Address for correspondence: Center for Soft Computing Research, Indian Statistical Institute, 203 Barrackpore Trunk Road, Kolkata, India - 700108.
Abstract: The paper addresses the problem of finding top k influential nodes in large scale directed social networks. We propose two new centrality measures, Diffusion Degree for independent cascade model of information diffusion and Maximum Influence Degree. Unlike other existing centrality measures, diffusion degree considers neighbors' contributions in addition to the degree of a node. The measure also works flawlessly with non uniform propagation probability distributions. On the other hand, Maximum Influence Degree provides the maximum theoretically possible influence (Upper Bound) for a node. Extensive experiments are performed with five different real life large scale directed social networks. With independent cascade model, we perform experiments for both uniform and non uniform propagation probabilities. We use Diffusion Degree Heuristic (DiDH) and Maximum Influence Degree Heuristic (MIDH), to find the top k influential individuals. k seeds obtained through these for both the setups show superior influence compared to the seeds obtained by high degree heuristics, degree discount heuristics, different variants of set covering greedy algorithms and Prefix excluding Maximum Influence Arborescence (PMIA) algorithm. The superiority of the proposed method is also found to be statistically significant as per T-test.
Keywords: Centrality Measure, Social Network, Influence Maximization, Independent Cascade Model, Statistical Significance
DOI: 10.3233/FI-2014-994
Journal: Fundamenta Informaticae, vol. 130, no. 3, pp. 317-342, 2014
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]