Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Theory that Counts: To Oscar Ibarra on His 70th Birthday
Article type: Research Article
Authors: Holzer, Markus | Klein, Andreas | Kutrib, Martin | Ruepp, Oliver
Affiliations: Institut für Informatik, Universität Giessen, Arndtstr. 2, 35392 Giessen, Germany. {holzer,kutrib}@informatik.uni-giessen.de | Institut für Informatik, Technische Universität München, Boltzmannstr. 3, 85748 Garching bei München, Germany. [email protected]
Note: [] Address for correspondence: Institut für Informatik, Universität Giessen, Arndtstr. 2, 35392 Giessen, Germany
Abstract: We show that the popular pencil puzzle NURIKABE is intractable from the computational complexity point of view, that is, it is NP-complete, even when the involved numbers are 1 and 2 only. To this end, we show how to simulate Boolean gates by the puzzle under consideration. Moreover, we also study some NURIKABE variants, which remain NP-complete, too.
DOI: 10.3233/FI-2011-534
Journal: Fundamenta Informaticae, vol. 110, no. 1-4, pp. 159-174, 2011
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]