Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Feng, Dingcheng | Chen, Feng | Xu, Wenli
Affiliations: National Laboratory for Information Science and Technology, Tsinghua University, Beijing, 100084, China. {fdc08,chenfeng,xuwl}@tsinghua.edu.cn
Note: [] Address for correspondence: Department of Automation, Tsinghua University, Beijing 100084, China
Abstract: Learning Markov boundaries from data without having to learn a Bayesian network first can be viewed as a feature subset selection problem and has received much attention due to its significance in the wide applications of AI techniques. Popular constraint based methods suffer from high computational complexity and are usually unstable in spaces of high dimensionality. We propose a new perspective from matroid theory towards the discovery of Markov boundaries of random variable in the domain, and develop a learning algorithm which guarantees to recover the true Markov boundaries by a greedy learning algorithm. Then we use the precision matrix of the original distribution as a measure of independence to make our algorithm feasible in large scale problems, which is essentially an approximation of the probabilistic relations with Gaussians and can find possible variables in Markov boundaries with low computational complexity. Experimental results on standard Bayesian networks show that our analysis and approximation can efficiently and accurately identify Markov boundaries in complex networks from data.
Keywords: Markov boundary, conditional independence, matroid
DOI: 10.3233/FI-2011-409
Journal: Fundamenta Informaticae, vol. 107, no. 4, pp. 415-434, 2011
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]