Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Nabongo, Diabate | Boni, Théodore K.
Affiliations: Université d'Abobo-Adjamé, UFR-SFA, Département de Mathématiques et Informatiques, 16 BP 372 Abidjan 16, Côte d'Ivoire. E-mail: [email protected] | Institut National Polytechnique Houphouët-Boigny de Yamoussoukro, BP 1093 Yamoussoukro, Côte d'Ivoire. E-mail: [email protected]
Abstract: We obtain some conditions under which the positive solution of the numerical approximation for the heat equation ut(x, t)=uxx(x, t), x∈(0, 1), t>0, with the singular boundary condition ux(1, t)=−u−β(1, t), where β>0 quenches in a finite time and estimate its semidiscrete quenching time. We also establish the convergence of the semidiscrete quenching time and obtain some results on numerical quenching rate and set. Finally we give some numerical results to illustrate our analysis.
Keywords: semidiscretizations, singular boundary condition, quenching, semidiscrete quenching time, convergence, numerical quenching rate, numerical quenching set
DOI: 10.3233/ASY-2008-0889
Journal: Asymptotic Analysis, vol. 59, no. 1-2, pp. 27-38, 2008
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]