Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Raguž, Andrija
Affiliations: Department of Mathematics, University of Zagreb, Bijenička cesta 30, 10000 Zagreb, Croatia E‐mail: [email protected]
Abstract: In this paper we study asymptotic behavior as ε→0 of Ginzburg–Landau functional Iε(v):=∫Ω(ε2v″2(s)+W(v′(s))+a(s)(v(s)+g(s))2) ds for v∈Hper2(Ω), where Ω⊆R is a bounded open interval, W is a non‐negative continuous function vanishing at ±1, a∈L1(Ω), and g is 1‐Lipschitz. Our consideration follows the approach introduced in the original paper by G. Alberti and S. Müller (Comm. Pure Appl. Math. 54 (2001), 761–825), where the case g=0 was studied. We show that their program can be modified in the case of functional Iε: we define suitable relaxation of Iε and prove a Γ‐convergence result in the topology of the so‐called Young measures on micropatterns. Moreover, we identify a unique minimizing measure for the functional in the limit, which is the unique translation‐invariant measure supported on the orbit of a particular periodic sawtooth function having minimal period and slope dependent on a derivative of g.
Keywords: Young measures, relaxation, Ginzburg–Landau functional, Gamma convergence
Journal: Asymptotic Analysis, vol. 41, no. 3-4, pp. 331-361, 2005
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]