Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Ghisi, Marina | Gobbino, Massimo
Affiliations: Università degli Studi di Pisa, Dipartimento di Matematica, via M. Buonarroti 2, 56127 Pisa, Italy E‐mail: [email protected] | Università degli Studi di Pisa, Dipartimento di Matematica Applicata “Ulisse Dini”, via Bonanno 25/B, 56126 Pisa, Italy E‐mail: [email protected]
Abstract: We investigate the evolution problem u"+δu'+m(|A1/2u|2)Au=0, u(0)=u0, u'(0)=u1, where H is a Hilbert space, A is a self‐adjoint non‐negative operator on H with domain D(A), δ>0 is a parameter, and m :[0,+∞[→[0,+∞[ is a locally Lipschitz continuous function. We prove that this problem has a unique global solution for positive times, provided that the initial data (u0,u1)∈D(A)×D(A1/2) satisfy a suitable smallness assumption and the non‐degeneracy condition m(|A1/2u0|2)>0. Moreover (u(t),u′(t),u″(t))→(u∞,0,0) in D(A)×D(A1/2)×H as t→+∞, where |A1/2u∞|m(|A1/2u∞|2)=0. These results apply to degenerate hyperbolic PDEs with non‐local non‐linearities.
Keywords: hyperbolic equations, degenerate hyperbolic equations, dissipative equations, global existence, asymptotic behaviour, Kirchhoff equations
Journal: Asymptotic Analysis, vol. 40, no. 1, pp. 25-36, 2004
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]