Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Grébert, B. | Kappeler, T.
Affiliations: UMR 6629 CNRS, Université de Nantes, 2 rue de la Houssière, BP 92208, 44322 Nantes cedex 3, France | Institut für Mathematik, Universität Zürich, Winterthurerstrasse 190, CH‐8057 Zürich, Switzerland
Abstract: Consider the 2×2 first order system due to Zakharov–Shabat, LY:={\rm i}\left(\matrix{1&0\cr 0&-1}\right)Y'+\left(\matrix{0&\psi_{1}\cr \psi _{2}&0}\right)Y=\lambda Y with ψ1,ψ2 being complex valued functions of period one in the weighted Sobolev space $H^{w}\equiv H^{w}_{\mathbb{C}}.$ Denote by spec(ψ1,ψ2) the set of periodic eigenvalues of L(ψ1,ψ2) with respect to the interval [0,2] and by specDir(ψ1,ψ2) the set of Dirichlet eigenvalues of L(ψ1,ψ2) when considered on the interval [0,1]. It is well known that spec(ψ1,ψ2) and specDir(ψ1,ψ2) are discrete. Theorem. Assume that w is a weight such that, for some δ>0, w−δ(k)=(1+|k|)−δw(k) is a weight as well. Then for any bounded subset ${\mathbb{B}}$ of 1‐periodic elements in Hw×Hw there exist N≥1 and M≥1 so that for any |k|≥N, and $(\psi_{1},\psi_{2})\in{\mathbb{B}} $, the set $\mathit{spec}(\psi_{1},\psi_{2})\cap \{\lambda \in{\mathbb{C}} \mid |\lambda -k\pi | < \pi/2\}$ contains exactly one isolated pair of eigenvalues {λ+k,λ−k} and $\mathit{spec}_{\rm Dir}(\psi_{1},\psi_{2})\cap \{\lambda \in{\mathbb{C}} \mid |\lambda -k\pi |<{\pi}/{2}\}$ contains a single Dirichlet eigenvalue μk. These eigenvalues satisfy the following estimates (i) Σ|k|≥Nw(2k)2|λ+k−λ−k|2≤M; (ii) $\sum _{|k|\geq N}w(2k)^{2}|\frac{(\lambda ^{+}_{k}+\lambda ^{-}_{k})} {2}-\mu _{k}|^{2}\leq M.$ Furthermore spec(ψ1,ψ2)\{λ±k,|k|≥N} and $\mathit{spec}_{\rm Dir}(\psi_{1},\psi_{2})\backslash \{\mu _{k}\mid |k|\geq N\}$ are contained in $\{\lambda \in{\mathbb{C}} \mid |\lambda | < N\pi -\pi /2\}$ and its cardinality is 4N−2, respectively 2N−1. When $\psi_{2}=\overline{\psi } _{1}$ (respectively $\psi_{2}=-\overline{\psi } _{1}),L(\psi_{1},\psi_{2})$ is one of the operators in the Lax pair for the defocusing (resp. focusing) nonlinear Schrödinger equation.
Journal: Asymptotic Analysis, vol. 25, no. 3-4, pp. 201-237, 2001
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]