Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Bruno, Oscar P.
Affiliations: School of Mathematics, University of Minnesota 206 Church St. SE, Minneapolis, MN, 55455, USA
Note: [] Member of the research group on Transitions and Defects in Ordered Materials
Abstract: We describe a construction, based on variational inequalities, which gives a hierarchy of upper and lower bounds (of odd orders 2k+1), on the various effective moduli of random multiphase materials and polycrystals. The bounds of order 2k+1 on a given effective modulus can be explicitly evaluated if a truncated Taylor expansion of the given modulus is known to order 2k+1. Our approach is motivated by prior investigations of Beran and other authors. Our calculations do not involve Green functions or n-point correlation functions, and they are very simple. We thus rederive known and obtain new sequences of bounds on the different effective moduli. We also describe a method that, for cell materials (i.e. materials in which cells of smaller and smaller length scales cover all space, with material properties assigned at random), permits one to calculate the truncated Taylor expansions that are needed for the explicit evaluation of the bounds. In connection with this, we show that the first coefficient in the low volume fraction expansion of any effective modulus of a cell material, coincides with the corresponding low volume fraction coefficient for an array of cells randomly distributed in a matrix.
DOI: 10.3233/ASY-1991-4404
Journal: Asymptotic Analysis, vol. 4, no. 4, pp. 339-365, 1991
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]