Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Rawat, Rama | Roy, Haripada | Roy, Prosenjit; *
Affiliations: Indian Institute of Technology, Kanpur, India
Correspondence: [*] Corresponding author. E-mail: [email protected].
Abstract: The aim of this work is to characterize the asymptotic behaviour of the first eigenfunction of the generalised p-Laplace operator with mixed (Dirichlet and Neumann) boundary conditions in cylindrical domains when the length of the cylindrical domains tends to infinity. This generalises an earlier work of Chipot et al. (Asymptot. Anal. 85(3–4) (2013) 199–227) where the linear case p=2 is studied. Asymptotic behavior of all the higher eigenvalues of the linear case and the second eigenvalues of general case (using topological degree) for such problems is also studied.
Keywords: p-Laplacian, uniform elliptcity, Poincaré inequality, Krasnoselskii’s genus
DOI: 10.3233/ASY-241907
Journal: Asymptotic Analysis, vol. 139, no. 3-4, pp. 245-277, 2024
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]