Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Ambrosio, Vincenzo; *
Affiliations: Dipartimento di Ingegneria Industriale e Scienze Matematiche, Università Politecnica delle Marche, Via Brecce Bianche, 12, Ancona, Italy
Correspondence: [*] Corresponding author. E-mail: [email protected].
Abstract: Let s∈(0,1), N>2s and Ds,2(RN):={u∈L2s∗(RN):‖u‖Ds,2(RN):=(CN,s2∬R2N|u(x)−u(y)|2|x−y|N+2sdxdy)12<∞}, where 2s∗:=2NN−2s is the fractional critical exponent and CN,s is a positive constant. We consider functionals J:Ds,2(RN)→R of the type J(u):=12‖u‖Ds,2(RN)2−∫RNb(x)G(u)dx, where G(t):=∫0tg(τ)dτ, g:R→R is a continuous function with subcritical growth at infinity, and b:RN→R is a suitable weight function. We prove that a local minimizer of J in the topology of the subspace Vs:={u∈Ds,2(RN):u∈C(RN) with supx∈RN(1+|x|N−2s)|u(x)|<∞} must be a local minimizer of J in the Ds,2(RN)-topology.
Keywords: Fractional operators, variational methods, L∞-estimate
DOI: 10.3233/ASY-231833
Journal: Asymptotic Analysis, vol. 134, no. 1-2, pp. 227-239, 2023
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]