Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Mizoguchi, Norikoa | Souplet, Philippeb; *
Affiliations: [a] Department of Mathematics, Tokyo Gakugei University, Koganei, Tokyo 184-8501, Japan | [b] Université Sorbonne Paris Nord, CNRS UMR 7539, Laboratoire Analyse, Géométrie et Applications, 93430 Villetaneuse, France
Correspondence: [*] Corresponding author. E-mail: [email protected].
Abstract: The Cauchy–Dirichlet problem for the superquadratic viscous Hamilton–Jacobi equation (VHJ) from stochastic control theory, admits a unique, global viscosity solution. Solutions thus exist in the weak sense after appearance of singularity, which occurs through gradient blow-up (GBU) on the boundary. Whereas viscosity solution theory has been extensively applied to many PDEs, there seem to be less results on refined singular behavior of solutions. Although occurrence of two types of GBU, with or without loss of boundary condition (LBC), are known, detailed behavior after GBU has remained open except for a strongly restricted special class of one dimensional solutions. In this paper, in general dimensions, we construct solutions which undergo GBU with LBC arbitrarily many times and then recover regularity, as well as solutions without LBC at first GBU time. In one space dimension, we obtain the complete classification of viscosity solutions at each time, which extends to radial case in higher dimensions. Furthermore we show the existence of solutions exhibiting an arbitrarily given combination of GBU types with/without LBC at multiple times, in which a new type of behavior called “bouncing” is discovered. Global weak solutions of VHJ with multiple times singularity turn out to display larger variety of behaviors than in Fujita equation. We introduce a method based on an arbitrary number of critical parameters, whose continuity requires delicate arguments. Since we do not rely on any known special solution unlike in Fujita equation, our method is expected to apply to other equations. Singular behaviors at multiple times are completely new in the context of VHJ but also of stochastic control theory. Our results imply that for certain spatial distributions of rewards, if a controlled Brownian particle starts near the boundary, then the net gain attains profitable values on different time horizons but not on some intermediate times.
Keywords: Viscous Hamilton–Jacobi equation, gradient blow-up, loss and recovery of boundary conditions, multiple time singularities, viscosity solutions, zero-number, critical parameters, stochastic control
DOI: 10.3233/ASY-221813
Journal: Asymptotic Analysis, vol. 133, no. 3, pp. 291-353, 2023
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]