Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Anahtarci, Berkay; | Djakov, Plamen
Affiliations: Sabanci University, Orhanli, 34956 Tuzla, Istanbul, Turkey. E-mails: [email protected], [email protected]
Note: [] Corresponding author. E-mail: [email protected]
Abstract: The one-dimensional Dirac operator \[L=\mathrm{i}\pmatrix{1&0\cr0&-1}\frac{\mathrm{d}}{\mathrm{d}x}+\pmatrix{0&P(x)\crQ(x)&0},\quad P,Q\inL^{2}([0,\uppi ]),\] considered on $[0,\uppi ]$ with periodic or antiperiodic boundary conditions, has discrete spectra. For large enough |n|, n∈Z, there are two (counted with multiplicity) eigenvalues λn−, λn+ (periodic if n is even, or antiperiodic if n is odd) such that |λn±−n|<1/2. We study the asymptotics of spectral gaps γn=λn+−λn− in the case P(x)=ae−2ix+Ae2ix, Q(x)=be−2ix+Be2ix, where a, A, b, B are any complex numbers. We show, for large enough m, that γ±2m=0 and \begin{eqnarray*}\lefteqn{\gamma_{2m+1}=\pm2\frac{\sqrt{(Ab)^{m}(aB)^{m+1}}}{4^{2m}(m!)^{2}}\biggl[1+\mathrm{O}\biggl(\frac{\log^{2}m}{m^{2}}\biggr)\biggr],}\\\lefteqn{\gamma_{-(2m+1)}=\pm2\frac{\sqrt{(Ab)^{m+1}(aB)^{m}}}{4^{2m}(m!)^{2}}\biggl[1+\mathrm{O}\biggl(\frac{\log^{2}m}{m^{2}}\biggr)\biggr].}\end{eqnarray*}
Keywords: 1D Dirac operator, spectral gap asymptotics
DOI: 10.3233/ASY-141274
Journal: Asymptotic Analysis, vol. 92, no. 1-2, pp. 141-160, 2015
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]