Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Figueiredo, Giovany M.; | Santos, Jefferson A.
Affiliations: Universidade Federal do Pará, Faculdade de Matemática, 66075-110, Belém, PA, Brazil. E-mail: [email protected] | Universidade Federal de Campina Grande, Unidade Acadêmica de Matemática e Estatística, 58109-970, Campina Grande, PB, Brazil. E-mail: [email protected]
Note: [] Corresponding author. E-mail: [email protected]
Abstract: This paper is concerned with the multiplicity of nontrivial solutions in an Orlicz–Sobolev space for a nonlocal problem with critical growth, involving N-functions and theory of locally Lipschitz continuous functionals. More precisely, in this paper, we study a result of multiplicity to the following multivalued elliptic problem: −M(∫ΩΦ(|∇u|) dx)ΔΦu∈∂F(·,u)+αh(u) in Ω, u∈W01LΦ(Ω), where Ω⊂RN is a bounded smooth domain, N≥3, M is a continuous function, Φ is an N-function, h is an odd increasing homeomorphism from R to R, α is positive parameter, ΔΦ is the corresponding Φ-Laplacian and ∂F(·,t) stands for Clarke generalized of a function F linked with critical growth. We use genus theory to obtain the main result.
Keywords: Orlicz–Sobolev space, nonlocal problem, multivalued elliptic problem
DOI: 10.3233/ASY-141243
Journal: Asymptotic Analysis, vol. 89, no. 1-2, pp. 151-172, 2014
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]