Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Purchase individual online access for 1 year to this journal.
Price: EUR 315.00Impact Factor 2024: 1.7
The purpose of the Journal of Intelligent & Fuzzy Systems: Applications in Engineering and Technology is to foster advancements of knowledge and help disseminate results concerning recent applications and case studies in the areas of fuzzy logic, intelligent systems, and web-based applications among working professionals and professionals in education and research, covering a broad cross-section of technical disciplines.
The journal will publish original articles on current and potential applications, case studies, and education in intelligent systems, fuzzy systems, and web-based systems for engineering and other technical fields in science and technology. The journal focuses on the disciplines of computer science, electrical engineering, manufacturing engineering, industrial engineering, chemical engineering, mechanical engineering, civil engineering, engineering management, bioengineering, and biomedical engineering. The scope of the journal also includes developing technologies in mathematics, operations research, technology management, the hard and soft sciences, and technical, social and environmental issues.
Authors: Vallabhaneni, Nagalakshmi | Prabhavathy, Panneer
Article Type: Research Article
Abstract: Numerous people are interested in learning yoga due to the increased tension levels in the modern lifestyle, and there are a variety of techniques or resources available. Yoga is practiced in yoga centers, by personal instructors, and through books, the Internet, recorded videos, etc. As the aforementioned resources may not always be available, a large number of people will opt for self-study in fast-paced lifestyles. Self-learning makes it impossible to recognize an incorrect posture. Incorrect poses will have a negative effect on the patient’s health, causing severe agony and long-term chronic issues. Computer vision (CV)-related techniques derive pose features and …conduct pose analysis using non-invasive CV methods. The application of machine learning (ML) and artificial intelligence (AI) techniques to an inter-disciplinary field like yoga becomes quite difficult. Due to its potent feature learning ability, deep learning (DL) has recently achieved an impressive level of performance in classifying yoga poses. In this paper, an artificial algae optimizer with hybrid deep learning-based yoga pose estimation (AAOHDL-YPE) model is presented. The presented AAOHDL-YPE model analyzes yoga video clips to estimate pose. Utilizing Part Confidence Map and Part Affinity Field with bipartite equivalent and parsing, OpenPose can be employed to determine the joint location. The deep belief network (DBN) model is then used for Yoga recognition. Finally, the AAO algorithm is utilized to enhance the EfficientNet model’s recognition performance. The results of a comprehensive experimentation analysis reveal that the AAOHDL-YPE technique produces superior results in comparison to existing methods. Show more
Keywords: Yoga posture, activity recognition, deep learning, metaheuristics, computer vision
DOI: 10.3233/JIFS-233583
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-11, 2023
Authors: Sendhil, R. | Arulmurugan, A. | Jose Moses, G. | Kaviarasan, R. | Ramadoss, P.
Article Type: Research Article
Abstract: Occult peritoneal metastasis often emerges in sick persons having matured gastric cancer (GC) and is inexpertly detected with presently feasible instruments. Due to the existence of peritoneal metastasis that prevents the probability of healing crucial operation, there relies upon a discontented requirement for an initial diagnosis to accurately recognize sick persons having occult peritoneal metastasis. The proffered paradigm of this chapter identifies the initial phases of occult peritoneal metastasis in GC. The initial phase accompanies metabolomics for inspecting biomarkers. If the sick person undergoes the initial signs of occult peritoneal metastasis in GC, early detection is conducted. Yet, the physical …prognosis of this cancer cannot diagnose it, and so, automated detection of the images by dissecting the preoperational Computed Tomography (CT) images by conditional random fields accompanying Pro-DAE (Post-processing Denoising Autoencoders) and the labeling in the images is rid by denoising strainers; later, the ensued images and the segmented images experience the Graph Convolutional Networks (GCN), and the outcome feature graph information experience the enhanced categorizer (Greywold and Cuckoo Search Naïve Bayes categorizer) procedure that is employed for initial diagnosis of cancer. Diagnosis of cancer at the initial phase certainly lessens the matured phases of cancer. Hence, this medical information is gathered and treated for diagnosing the sickness. Show more
Keywords: Gastric Cancer, MIoT, Greywold and Cuckoo Search Naïve Bayes categorizer, Cuckoo-Grey Wolf search Correlative Naïve Bayes categorizer
DOI: 10.3233/JIFS-233510
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-15, 2023
Authors: Priya, S. Baghavathi | Rani, P. Sheela | Chokkalingam, S.P. | Prathik, A. | Mohan, M. | Anitha, G. | Thangavel, M. | Suthir, S.
Article Type: Research Article
Abstract: Traditional testimony and electronic endorsements are extremely challenging to uphold and defend, and there is a problem with challenging authentication. The identity of the student is typically not recognized when it comes to requirements for access to a student’s academic credentials that are scattered over numerous sites. This is an issue with cross-domain authentication methods. On the one hand, whenever the volume of cross-domain authentication requests increases dramatically, the response time can become intolerable because of the slow throughput associated with blockchain mechanisms. These systems still do not give enough thought to the cross-domain scenario’s anonymity problem. This research proposes …an effective cross-domain authentication mechanism called XAutn that protects anonymity and integrates seamlessly through the present Certificate Transparency (CT) schemes. XAutn protects privacy and develops a fast response correctness evaluation method that is based on the RSA (Rivest, Shamir, and Adleman) cryptographic accumulator, Zero Knowledge Proof Algorithm, and Proof of Continuous work consensus Algorithm (POCW). We also provide a privacy-aware computation authentication approach to strengthen the integrity of the authentication messages more securely and counteract the discriminatory analysis of malevolent requests. This research is primarily used to validate identities in a blockchain network, which makes it possible to guarantee their authenticity and integrity while also increasing security and privacy. The proposed technique greatly outperformed the current methods in terms of authentication time, period required for storage, space for storage, and overall processing cost. The proposed method exhibits a speed gain of authentication of roughly 9% when compared to traditional blockchain systems. The security investigation and results from experiments demonstrate how the proposed approach is more reliable and trustworthy. Show more
Keywords: Zero Knowledge Proof, RSA accumulator, educational certificates, cross-domain authentication, blockchain
DOI: 10.3233/JIFS-235140
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-20, 2023
Authors: Lakshmi Narayanan, K. | Naresh, R.
Article Type: Research Article
Abstract: Vehicular Ad-Hoc Network (VANET) Technology is advancing due to the convergence of VANET and cloud computing technologies, Vehicular Ad-Hoc Network (VANET) entities can benefit from the cloud service provider’s favourable storage and computing capabilities. Cloud computing, the processing and storage capabilities provided by various cloud service providers, would be available to all VANET enterprises. Digital Twin helps in creating a digital view of the Vehicle. It focuses on the physical behaviour of the Vehicle as well as the software it alerts when it finds issues with the performance. The representation of the Vehicle is created using intelligent sensors, which are …in OBU of VANET that help collect info from the product. The author introduces the Cloud-based three-layer key management for VANET in this study. Because VANET connections can abruptly change, critical negotiation verification must be completed quickly and with minimal bandwidth. When the Vehicles are in movement, we confront the difficulty in timely methods, network stability, and routing concerns like reliability and scalability. We must additionally address issues such as fair network access, inappropriate behaviour identification, cancellation, the authentication process, confidentiality, and vehicle trustworthiness verification. The proposed All-Wheel Control (AWC) method in this study may improve the safety and efficiency of VANETs. This technology would also benefit future intelligent transportation systems. The Rivest–Shamir–Adleman (RSA) algorithm and Chinese Remainder Theorem algorithms generate keys at the group, subgroup, and node levels. The proposed method produces better results than the previous methods. Show more
Keywords: Cloud computing, VANET, RSA, CRT, AWC
DOI: 10.3233/JIFS-233527
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-11, 2023
Authors: Zhao, Liang | Wang, Jiawei | Liu, Shipeng | Yang, Xiaoyan
Article Type: Research Article
Abstract: Tunnels water leakage detection in complex environments is difficult to detect the edge information due to the structural similarity between the region of water seepage and wet stains. In order to address the issue, this study proposes a model comprising a multilevel transformer encoder and an adaptive multitask decoder. The multilevel transformer encoder is a layered transformer to extract the multilevel characteristics of water leakage information, and the adaptive multitask decoder comprises the adaptive network branches. The adaptive network branches generate the ground truths of wet stains and water seepage through the threshold value and transmit them to the network …for training. The converged network, the U-net, fuses coarse images from the adaptive multitask decoder, and the fusion images are the final segmentation results of water leakage in tunnels. The experimental results indicate that the proposed model achieves 95.1% Dice and 90.4% MIOU, respectively. This proposed model demonstrates a superior level of precision and generalization when compared to other related models. Show more
Keywords: Water leakage, multilevel transformer encoder, adaptive multitask decoder, adaptive network branches, converged network
DOI: 10.3233/JIFS-224315
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-15, 2023
Authors: Sugin Lal, G. | Porkodi, R.
Article Type: Research Article
Abstract: The term “educational data mining” refers to a field of study where information from academic environments is predicted using data mining, machine learning, and statistics. Education is the act of giving or receiving knowledge to or from someone who is formally studying and developing a natural talent. Over time, scholars have used data mining techniques to uncover hidden information in educational statistics and other external elements. This study suggests a unique method for analysing academic student performance that is based on data mining and machine learning. Here, the input is gathered as a dataset of student academic performance and is …processed for normalisation and noise reduction. Then, using the Boltzmann deep learning model coupled with linear kernel principal component analysis, this data’s characteristics were retrieved and chosen. Based on weights, information gain, and the Gini index, the characteristics are assessed and optimised. Following the selection of the pertinent data, conditional random field-based probabilistic clustering model is performed using RNN-based training, and the academic performance of the students is then examined using voting classifiers and sparse features. Experimental results are carried out for students academic performance dataset based on subjects in terms of training accuracy, validation accuracy, mean average precision, mean square error and correlation evaluation. Proposed technique attained accuracy of 96%, precision of 95%, Correlation Evaluation of 92% . Show more
Keywords: Student performance analysis, data mining, machine learning, clustering model, academic performance
DOI: 10.3233/JIFS-235350
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-17, 2024
Authors: Mohan, M. | Tamizhazhagan, V. | Balaji, S.
Article Type: Research Article
Abstract: Cloud computing is a new technology that provides services to customers anywhere, anytime, under varying conditions and managed by a third-party cloud provider. Even though cloud computing has progressed a lot, some attacks still happen. The recent anomalous and signature attacks use clever strategies such as low-rate attacks and attacking as an authenticated user. In this paper, a novel Attack Detection and Prevention (ADAPT) method is proposed to overcome this issue. The proposed system consists of three stages. An Intrusion Detection System is initially used to check whether there is an attack or not by comparing the IP address in …the Blacklist IP Database. If an attack occurs, the IP address will be added to the Blacklist IP database and blocked. The second stage uses Bi-directional LSTM and Bi-directional GRU to check the anomalous and signature attack. In the third stage, classified output is sent to reinforcement learning, if any attack occurs the IP address is added to the blacklist IP database otherwise the packets are forwarded to the user. The proposed ADAPT technique achieves a higher accuracy range than existing techniques. Show more
Keywords: Cloud computing, Bi-directional LSTM, Bi-directional GRU, IP address, and reinforcement learning
DOI: 10.3233/JIFS-236371
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-10, 2024
Authors: Li, Tao | Zhang, Zhongyu | Tao, Zhigang | Jia, Xinyu | Wang, Xiaolong | Wang, Jian
Article Type: Research Article
Abstract: Rock crack is one of the main factors responsible for rock failure. Uniaxial compression creep tests are performed using acoustic emission techniques, a high-sensitivity, non-radiative, non-destructive testing method to understand the influence of crack number on the precursor characteristics of short-term creep damage in the fractured rock mass. Based on the Grassberger-Procaccia (G-P) algorithm, the calculation step size for the correlation dimension value (D 2 ) of the acoustic emission ringing count rate is consistent with that for the acoustic emission b -value. The influence of the number of pre-cracks on the Acoustic emission precursor characteristics of red sandstone …creep is analyzed. The results show that near the destabilization of the specimen, the Acoustic emission accumulative ringing count surges in a stepwise manner, the Acoustic emission b -value decreases, the D 2 -value increases, the Acoustic emission amplitude shows high intensity and high frequency, and the ringing count increases sharply, all with the characteristics of failure precursors. During the accelerated creep stage of the specimens, with the increase of pre-cracks number, the precursory time points of acoustic emission b -value and D 2 -value advance, and their acoustic emission ringing counts increase sharply. Show more
Keywords: Acoustic emission, b-value, correlation dimension value (D2), precursor information, pre-cracks
DOI: 10.3233/JIFS-238964
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-16, 2024
Authors: Hou, Xiaoyu | Luo, Chao | Gao, Baozhong
Article Type: Research Article
Abstract: Candlesticks are widely used as an effective technical analysis tool in financial markets. Traditionally, different combinations of candlesticks have formed specific bullish/bearish patterns providing investors with increased opportunities for profitable trades. However, most patterns derived from subjective expertise without quantitative analysis. In this article, combining bullish/bearish patterns with ensemble learning, we present an intelligent system for making stock trading decisions. The Ensemble Classifier through Multimodal Perturbation (ECMP) is designed to generate a diverse set of precise base classifiers to further determine the candlestick patterns. It achieves this by: first, introducing perturbations to the sample space through bootstrap sampling; second, employing …an attribute reduction algorithm based on neighborhood rough set theory to select relevant features; third, perturbing the feature space through random subspace selection. Ultimately, the trading decisions are guided by the classification outcomes of this procedure. To evaluate the proposed model, we apply it to empirical investigations within the context of the Chinese stock market. The results obtained from our experiments clearly demonstrate the effectiveness of the approach. Show more
Keywords: Trading system, ensemble learning, multimodal perturbation method, neighborhood rough set theory
DOI: 10.3233/JIFS-237087
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-19, 2024
Authors: Zhao, Bin | Cao, Wei | Zhang, Jiqun | Gao, Yilong | Li, Bin | Chen, Fengmei
Article Type: Research Article
Abstract: Aiming at the issue that the current click-through rate prediction methods ignore the varying impacts of different input features on prediction accuracy and exhibit low accuracy when dealing with large-scale data, a click-through rate prediction method (GBIFM) which combines Gradient Boosting Decision Tree (GBDT) and Input-aware Factorization Machine (IFM) is proposed in this paper. The proposed GBIFM method employs GBDT for data processing, which can flexibly handle various types of data without the need for one-hot encoding of discrete features. An Input-aware strategy is introduced to refine the weight vector and embedding vector of each feature for different instances, adaptively …learning the impact of each input vector on feature representation. Furthermore, a fully connected network is incorporated to capture high-order features in a non-linear manner, enhancing the method’s ability to express and generalize complex structured data. A comprehensive experiment is conducted on the Criteo and Avazu datasets, the results show that compared to typical methods such as DeepFM, AFM, and IFM, the proposed method GBIFM can increase the AUC value by 10% –12% and decrease the Logloss value by 6% –20%, effectively improving the accuracy of click-through rate prediction. Show more
Keywords: Click-through rate estimation, GBIFM, GBDT, IFM
DOI: 10.3233/JIFS-234713
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-13, 2024
Authors: Zhai, Shanshan | Fan, Jianping | Liu, Lin
Article Type: Research Article
Abstract: Neutrosophic cubic set (NCS) can process complex information by choosing both interval value and single value membership and indeterminacy and falsehood components. The aggregation operators based on Aczel-Alsina t-norm and t-corm are quite effective for evaluating the interrelationship among attributes. The purpose of this paper is to diagnose the interrelationship among attributes with neutrosophic cubic information, and propose a multi-attribute decision-making(MADM) method for supplier selection problem with unknown weight under neutrosophic cubic environment. We defined neutrosophic cubic Aczel-Alsina (NC-AA) operator and neutrosophic cubic Aczel–Alsina weighted arithmetic average (NCAAWAA) operator, then we discussed various important results and some properties of the …proposed operators. Additionally, we proposed a MADM method under the presence of the NC-AAWAA operator. When the weights of attributes are unknown, we use the MEREC method to determine the weights. Later, the NC-AAWAA operator and MEREC method are applied to address the supplier selection problem. Finally, a sensitivity analysis and a comparative analysis are conducted to illustrate the stability and superiority of the proposed method. The results show the NC-AAWAA operator can handle the interrelationship among complex information more effectively, and MEREC method can weight the attributes based on the removal effect of a neutrosophic cubic attribute. Show more
Keywords: Multi-attribute decision-making (MADM), neutrosophic cubic set (NCS), Aczel-Alsina aggregation operators, MEREC method
DOI: 10.3233/JIFS-235274
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-22, 2024
Authors: Hong, Yuntao
Article Type: Research Article
Abstract: Obsessive-compulsive disorder (OCD) is a chronic disease and psychosocial disorder that significantly reduces the quality of life of patients and affects their personal and social relationships. Therefore, early diagnosis of this disorder is of particular importance and has attracted the attention of researchers. In this research, new statistical differential features are used, which are suitable for EEG signals and have little computational load. Hilbert-Huang transform was applied to EEGs recorded from 26 OCD patients and 30 healthy subjects to extract instant amplitude and phase. Then, modified mean, variance, median, kurtosis and skewness were calculated from amplitude and phase data. Next, …the difference of these statistical features between various pairs of EEG channels was calculated. Finally, different scenarios of feature classification were examined using the sparse nonnegative least squares classifier. The results showed that the modified mean feature calculated from the amplitude and phase of the interhemispheric channel pairs produces a high accuracy of 95.37%. The frontal lobe of the brain also created the most distinction between the two groups among other brain lobes by producing 90.52% accuracy. In addition, the features extracted from the frontal-parietal network produced the best classification accuracy (93.42%) compared to the other brain networks examined. The method proposed in this paper dramatically improves the accuracy of EEG classification of OCD patients from healthy individuals and produces much better results compared to previous machine learning techniques. Show more
Keywords: Obsessive-compulsive disorder (OCD), Electroencephalogram (EEG), Hilbert-Huang transform, statistical features, classification
DOI: 10.3233/JIFS-237946
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-13, 2024
Authors: Zhao, Xixi | Gu, Liang | Duan, Xiaorong | Wang, Liguo | Li, Zhenxi
Article Type: Research Article
Abstract: Cloud storage attribute libraries usually store a large amount of sensitive data such as personal information and trade secrets. Attackers adopt diverse and complex attack methods to target the cloud storage attribute database, which makes the defense work more challenging. In order to realize the secure storage of information, an attribute based cloud storage anti-attack algorithm based on dynamic authorization access is proposed. According to the characteristic variables of the sample, the data correlation matrix is calculated, and the principal component analysis method is adopted to reduce the dimension of the data, build the anti-attack code model, simulate the dynamic …authorization access rights, and calculate the packet loss rate according to the anti-attack flow. Design the initialization stage, cluster stage and cluster center update stage to realize the attack prevention of cloud storage attribute database. The experimental results show that the proposed algorithm can accurately classify the anti-attack code, has good packet processing ability, relatively short page request time, and anti-attack success rate is higher than 90%, which can effectively ensure the stability of the algorithm. Show more
Keywords: Dynamic authorization access, cloud storage attributes, basic anti-attack algorithm, anti-attack code model, access permissions
DOI: 10.3233/JIFS-237409
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-10, 2024
Authors: Ning, Yi | Liu, Meiyu | Guo, Xifeng | Liu, Zhiyong | Wang, Xinlu
Article Type: Research Article
Abstract: Accurate load forecasting is an important issue for safe and economic operation of power system. However, load data often has strong non-stationarity, nonlinearity and randomness, which increases the difficulty of load forecasting. To improve the prediction accuracy, a hybrid short-term load forecasting method using load feature extraction based on complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) and refined composite multi-scale entropy (RCMSE) and improved bidirectional long short time memory (BiLSTM) error correction is proposed. Firstly, CEEMDAN is used to separate the detailed information and trend information of the original load series, RCMSE is used to reconstruct the feature …information, and Spearman is used to screen the features. Secondly, an improved butterfly optimization algorithm (IBOA) is proposed to optimize BiLSTM, and the reconstructed components are predicted respectively. Finally, an error correction model is constructed to mine the hidden information contained in error sequence. The experimental results show that the MAE, MAPE and RMSE of the proposed method are 645 kW, 0.96% and 827.3 kW respectively, and MAPE is improved by about 10% compared with other hybrid models. Therefore, the proposed method can overcome the problem of inaccurate prediction caused by data and inherent defects of models and improve the prediction accuracy. Show more
Keywords: Short-term load forecasting, complete ensemble empirical mode decomposition with adaptivenoise, refined composite multi-scale entropy, improved butterfly optimization algorithm, bidirectional long short time memory neural network
DOI: 10.3233/JIFS-237993
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-18, 2024
Authors: Arulmurugan, A. | Jose Moses, G. | Gandhi, Ongole | Sheshikala, M. | Arthie, A.
Article Type: Research Article
Abstract: In the current scenario, feature selection (FS) remains one of the very important functions in machine learning. Decreasing the feature set (FSt) assists in enhancing the classifier’s accuracy. Because of the existence of a huge quantity of data within the dataset (DS), it remains a colossal procedure for choosing the requisite features out of the DS. Hence, for resolving this issue, a new Chaos Quasi-Oppositional-based Flamingo Search Algorithm with Simulated Annealing Algorithm (CQOFSASAA) has been proffered for FS and for choosing the optimum FSt out of the DSs, and, hence, this lessens the DS’ dimension. The FSA technique can be …employed for selecting the optimal feature subset out of the DS. Generalized Ring Crossover has been as well embraced for selecting the very pertinent features out of the DS. Lastly, the Kernel Extreme Learning Machine (KELM) classifier authenticates the chosen features. This proffered paradigm’s execution has been tested by standard DSs and the results have been correlated with the rest of the paradigms. From the experimental results, it has been confirmed that this proffered CQOFSASAA attains 93.74% of accuracy, 92% of sensitivity, and 92.1% of specificity. Show more
Keywords: Quasi-oppositional, feature selection, Flamingo Search Algorithm, Simulated Annealing, convergence rate
DOI: 10.3233/JIFS-233557
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-12, 2023
Authors: Harikumar, Yedhu | Muthumeenakshi, M.
Article Type: Research Article
Abstract: The Indian stock market is a dynamic, complicated system that is impacted by many different variables, making it difficult to anticipate its future. The utilization of deep learning and optimization techniques to forecast stock market movements has gained popularity in recent years. To foresee the Indian stock market, an innovative approach is presented in this study that combines the Grey Wolf Optimization algorithm with a hybrid Convolutional Neural Network (CNN) and Bi-Directional Long-Short Term Memory (Bi-LSTM) framework. The stock market information is first pre-processed utilizing a CNN to extract pertinent features. The Bi-LSTM system, that is intended to capture the …long-term dependencies and temporal correlations of the stock market statistics, is then fed the CNN’s outcome. The model parameters are then optimized utilizing the Grey Wolf Optimization (GWO) technique, which also increases forecasting accuracy. The findings demonstrate that, in terms of forecasting accuracy, the suggested method outperforms a number of contemporary methods, including conventional time series models, neural networks, and evolutionary algorithms. Thus, the suggested methodology provides an effective way to forecast the Indian stock market by combining deep learning and optimization approaches. Show more
Keywords: Indian stock market, grey wolf optimization, deep learning approach, bi-directional long-short term memory, convolutional neural network
DOI: 10.3233/JIFS-233716
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-15, 2023
Authors: Yu, Xingping | Yang, Yang
Article Type: Research Article
Abstract: The rapid advancement of communication and information technology has led to the expansion and blossoming of digital music. Recently, music feature extraction and classification have emerged as a research hotspot due to the difficulty of quickly and accurately retrieving the music that consumers are looking for from a large volume of music repositories. Traditional approaches to music classification rely heavily on a wide variety of synthetically produced aural features. In this research, we propose a novel approach to selecting the musical genre from user playlists by using a classification and feature selection machine learning model. To filter, normalise, and eliminate …missing variables, we collect information on the playlist’s music genre and user history. The characteristics of this data are then selected using a convolutional belief transfer Gaussian model (CBTG) and a fuzzy recurrent adversarial encoder neural network (FRAENN). The experimental examination of a number of music genre selection datasets includes measures of training accuracy, mean average precision, F-1 score, root mean squared error (RMSE), and area under the curve (AUC). Results show that this model can both create a respectable classification result and extract valuable feature representation of songs using a wide variety of criteria. Show more
Keywords: Music genre selection, user playlists, machine learning, classification, feature selection
DOI: 10.3233/JIFS-235478
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-12, 2024
Authors: Prabu Sankar, N. | Usha, D.
Article Type: Research Article
Abstract: This research paper presents a novel approach to improving healthcare services in rural areas by leveraging the potential of Fuzzy Intelligence Systems, Internet of Bodies (IoB) devices, and Blockchain technology. It begins by exploring the design and development of a Blockchain-based Patients Record System (BPRS), which ensures secure, transparent, and tamper-proof storage of patient medical records. The paper then delves into the fabrication of advanced IoB devices, specifically designed to study and monitor the health of rural populations. These devices, integrated with Fuzzy Intelligence Systems, provide efficient and reliable data capture, interpretation, and decision-making support. The highlight of the study …is the innovative integration of the IoB enabled Patient Monitoring System with the BPRS, which ensures real-time data synchronization and secure access to patient data for authorized personnel. The system collectively promotes efficient healthcare delivery, data privacy, and patient safety in rural areas. Show more
Keywords: Fuzzy intelligence systems, blockchain-based patients record system, internet of bodies devices, rural health monitoring, integrated healthcare system
DOI: 10.3233/JIFS-233752
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-9, 2024
Authors: Wang, Hanpeng | Xiong, Hengen
Article Type: Research Article
Abstract: An improved genetic algorithm is proposed for the Job Shop Scheduling Problem with Minimum Total Weight Tardiness (JSSP/TWT). In the proposed improved genetic algorithm, a decoding method based on the Minimum Local Tardiness (MLT) rule of the job is proposed by using the commonly used chromosome coding method of job numbering, and a chromosome recombination operator based on the decoding of the MLT rule is added to the basic genetic algorithm flow. As a way to enhance the quality of the initialized population, a non-delay scheduling combined with heuristic rules for population initialization. and a PiMX (Precedence in Machine crossover) …crossover operator based on the priority of processing on the machine is designed. Comparison experiments of simulation scheduling under different algorithm configurations are conducted for randomly generated larger scale JSSP/TWT. Statistical analysis of the experimental evidence indicates that the genetic algorithm based on the above three improvements exhibits significantly superior performance for JSSP/TWT solving: faster convergence and better scheduling solutions can be obtained. Show more
Keywords: Improved genetic algorithm, total weight tardiness, minimum local tardiness, PiMX
DOI: 10.3233/JIFS-236712
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-16, 2024
Authors: Ma, Chengfei | Yang, Xiaolei | Lu, Heng | He, Siyuan | Liu, Yongshan
Article Type: Research Article
Abstract: When calculating participants’ contribution to federated learning, addressing issues such as the inability to collect complete test data and the impact of malicious and dishonest participants on the global model is necessary. This article proposes a federated aggregation method based on cosine similarity approximation Shapley value method contribution degree. Firstly, a participant contribution calculation model combining cosine similarity and the approximate Shapley value method was designed to obtain the contribution values of the participants. Then, based on the calculation model of participant contribution, a federated aggregation algorithm is proposed, and the aggregation weights of each participant in the federated aggregation …process are calculated by their contribution values. Finally, the gradient parameters of the global model were determined and propagated to all participants to update the local model. Experiments were conducted under different privacy protection parameters, data noise parameters, and the proportion of malicious participants. The results showed that the accuracy of the algorithm model can be maintained at 90% and 65% on the MNIST and CIFAR-10 datasets, respectively. This method can reasonably and accurately calculate the contribution of participants without a complete test dataset, reducing computational costs to a certain extent and can resist the influence of the aforementioned participants. Show more
Keywords: Federated aggregation algorithm, contribution assessment, cosine similarity, Shapley value, equitable distribution
DOI: 10.3233/JIFS-236977
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-17, 2024
Authors: Rachamadugu, Sandeep Kumar | Pushphavathi, T.P.
Article Type: Research Article
Abstract: This paper introduces an innovative approach, the LS-SLM (Local Search with Smart Local Moving) technique, for enhancing the efficiency of article recommendation systems based on community detection and topic modeling. The methodology undergoes rigorous evaluation using a comprehensive dataset extracted from the “dblp. v12.json” citation network. Experimental results presented herein provide a clear depiction of the superior performance of the LS-SLM technique when compared to established algorithms, namely the Louvain Algorithm (LA), Stochastic Block Model (SBM), Fast Greedy Algorithm (FGA), and Smart Local Moving (SLM). The evaluation metrics include accuracy, precision, specificity, recall, F-Score, modularity, Normalized Mutual Information (NMI), betweenness …centrality (BTC), and community detection time. Notably, the LS-SLM technique outperforms existing solutions across all metrics. For instance, the proposed methodology achieves an accuracy of 96.32%, surpassing LA by 16% and demonstrating a 10.6% improvement over SBM. Precision, a critical measure of relevance, stands at 96.32%, showcasing a significant advancement over GCR-GAN (61.7%) and CR-HBNE (45.9%). Additionally, sensitivity analysis reveals that the LS-SLM technique achieves the highest sensitivity value of 96.5487%, outperforming LA by 14.2%. The LS-SLM also demonstrates superior specificity and recall, with values of 96.5478% and 96.5487%, respectively. The modularity performance is exceptional, with LS-SLM obtaining 95.6119%, significantly outpacing SLM, FGA, SBM, and LA. Furthermore, the LS-SLM technique excels in community detection time, completing the process in 38,652 ms, showcasing efficiency gains over existing techniques. The BTC analysis indicates that LS-SLM achieves a value of 94.6650%, demonstrating its proficiency in controlling information flow within the network. Show more
Keywords: Recommender Systems (RS), BagofWords (BoW), Pearson Correlation Co-efficient based Latent Dirichlet Allocation (PCC-LDA), Linear Scaling based Smart Local Moving (LS-SLM), Time Frequency and Inverse Document Frequency (TF-IDF), Community detection
DOI: 10.3233/JIFS-233851
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-17, 2024
Authors: Lalitha, V. | Latha, B.
Article Type: Research Article
Abstract: The most valuable information of Hyperspectral Image (HSI) should be processed properly. Using dimensionality reduction techniques in two distinct approaches, we created a structure for HSI to collect physiological and diagnostic information. The tissue Oxygen Saturation Level (StO2 ) was extracted using the HSI approach as a physiological characteristic for stress detection. Our research findings suggest that this unique characteristic may not be affected by humidity or temperature in the environment. Comparing the standard StO2 reference and pressure concentrations, the social stress assessments showed a substantial variance and considerable practical differentiation. The proposed system has already been evaluated on …tumor images from rats with head and neck cancers using a spectrum from 450 to 900 nm wavelength. The Fourier transformation was developed to improve precision, and normalize the brightness and mean spectrum components. The analysis of results showed that in a difficult situation where awareness could be inexpensive due to feature possibilities for rapid classification tasks and significant in measuring the structure of HSI analysis for cancer detection throughout the surgical resection of wildlife. Our proposed model improves performance measures such as reliability at 89.62% and accuracy at 95.26% when compared with existing systems. Show more
Keywords: Hyperspectral Image, dimensionality reduction, stress tests, cancer detection, fourier coefficients
DOI: 10.3233/JIFS-236935
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-12, 2024
Authors: Fan, Jianping | Chai, Mingxuan | Wu, Meiqin
Article Type: Research Article
Abstract: In this manuscript, we construct a Multi-Criteria Decision-Making (MCDM) model to study the new energy vehicle (NEV) battery supplier selection problem. Firstly, we select criteria to build an evaluation index system. Secondly, SAWARA and MEREC methods are used to calculate subjective and objective weights in the ranking process, respectively, and PTIHFS (Probabilistic Triangular Intuitionistic Hesitant Fuzzy Set) is employed to describe the decision maker’s accurate preferences in performing the calculation of subjective weights. Then, the game theory is used to find the satisfactory weights. We use TFNs to describe the original information in the MARCOS method to obtain the optimal …alternative. Finally, a correlation calculation using Spearman coefficients is carried out to compare with existing methods and prove the model’s validity. Show more
Keywords: PTIHFS, SWARA, MEREC, MARCOS, game theory
DOI: 10.3233/JIFS-231975
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-19, 2024
Authors: Devi, Salam Jayachitra | Doley, Juwar | Gupta, Vivek Kumar
Article Type: Research Article
Abstract: Object detection has made significant strides in recent years, but it remains a challenging task to accurately and quickly identify and detect objects. While humans can easily recognize objects in images or videos regardless of their appearance, computers face difficulties in this task. Object detection plays a crucial role in computer vision and finds applications in various domains such as healthcare, security, agriculture, home automation and more. To address the challenges of object detection, several techniques have been developed including RCNN, Faster RCNN, YOLO and Single Shot Detector (SSD). In this paper, we propose a modified YOLOv5s architecture that aims …to improve detection performance. Our modified architecture incorporates the C3Ghost module along with the SPP and SPPF modules in the YOLOv5s backbone network. We also utilize the Adam and Stochastic Gradient Descent (SGD) optimizers. The paper also provides an overview of three major versions of the YOLO object detection model: YOLOv3, YOLOv4 and YOLOv5. We discussed their respective performance analyses. For our evaluation, we collected a database of pig images from the ICAR-National Research Centre on Pig farm. We assessed the performance using four metrics such as Precision (P), Recall (R), F1-score and mAP @ 0.50. The computational results demonstrate that our method YOLOv5s architecture achieves a 0.0414 higher mAP while utilizing less memory space compared to the original YOLOv5s architecture. This research contributes to the advancement of object detection techniques and showcases the potential of our modified YOLOv5s architecture for improved performance in real world applications. Show more
Keywords: Object detection, YOLO, convolutional neural networks, pig, and computer vision
DOI: 10.3233/JIFS-231032
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-19, 2024
Authors: Kexing, Zhang | Jiang, He
Article Type: Research Article
Abstract: Recent developments in wireless networking, big data technologies including 5G networks, healthcare big data analytics, the Internet of Things (IoT), sophisticated wearable technologies, and artificial intelligence (AI) have made it possible to design intelligent illness diagnostic models. In addition to its critical function in e-health applications, 5G-IoT is becoming a standard feature of intelligent software. Intelligent systems and architectures are necessary for e-health applications to counteract threats to the privacy of patients’ medical information. Using machine learning and IoMT, this research suggests a new approach to cloud data analysis using the 5G network in the context of a recommendation model. …This application of the 5G cloud network to the monitoring and analysis of healthcare data makes use of variational adversarial transfer convolutional neural networks. The treatment plan for abnormalities in a tolerant body is derived from this clustered outcome. Experiment analysis was performed for a number of healthcare datasets with respect to training precision, network efficiency, F-1 score, root-mean-squared error, and mean average precision as the metrics of interest. Show more
Keywords: 5G network, cloud data analysis, recommendation model, machine learning, internet of medical things (IoMT)
DOI: 10.3233/JIFS-235064
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-7, 2024
Authors: Rao, Bommaraju Srinivasa | Banerjee, Kakoli | Anand Deva Durai, C. | Balu, S. | Sahoo, Ashok Kumar | Priyadharshini, A. | Rama Krishna, Paladugu | Kakade, Revannath Babanrao
Article Type: Research Article
Abstract: In recent years, the Internet of Things (IoT) has rapidly emerged as an essential technology, enabling seamless communication between billions of interconnected devices. These devices generate a massive amount of data that requires efficient management to ensure optimum performance in IoT environments. Dynamic load balancing (DLB) is a crucial technique employed to distribute workloads evenly across multiple computing resources, thereby reducing latency and increasing the overall efficiency of IoT networks. This paper presents a novel DLB approach based on type-2 fuzzy logic systems (T2FLS) to enhance the performance and reliability of IoT environments. The proposed T2FLS-based DLB technique addresses the …inherent uncertainties and imprecisions in IoT networks by considering various parameters, such as workload, processing capability, and communication latency. A comprehensive performance evaluation is carried out to compare the proposed method with traditional DLB approaches. Simulation results demonstrate that the T2FLS-based DLB technique significantly improves the network’s response time, throughput, and energy efficiency, while also providing better adaptability and robustness to dynamic changes in IoT environments. This study contributes to the advancement of DLB techniques in IoT networks and lays the groundwork for further research in this field. Show more
Keywords: Dynamic load balancing, internet of things, type-2 fuzzy logic systems, performance evaluation, energy efficiency
DOI: 10.3233/JIFS-234105
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-9, 2024
Authors: Niyasudeen, F. | Mohan, M.
Article Type: Research Article
Abstract: With the growing reliance on cloud computing, ensuring robust security and data protection has become a pressing concern. Traditional cryptographic methods face potential vulnerabilities in the post-quantum era, necessitating the development of advanced security frameworks. This paper presents a fuzzy-enhanced adaptive multi-layered cloud security framework that leverages artificial intelligence, quantum-resistant cryptography, and fuzzy systems to provide comprehensive protection in cloud environments. The proposed framework incorporates data encryption, access control, and intrusion detection mechanisms, with fuzzy logic systems augmenting the decision-making process for threat detection and response. The integration of artificial intelligence and quantum-resistant cryptographic techniques enhances the framework’s adaptability and …resilience against emerging threats. The implementation of fuzzy systems further improves the accuracy and efficiency of the security mechanisms, ensuring robust protection in the face of uncertainty and evolving attack vectors. The fuzzy-enhanced adaptive multi-layered cloud security framework offers a comprehensive, adaptable, and efficient solution for securing cloud infrastructures, safeguarding sensitive data, and mitigating the risks associated with the post-quantum era. Show more
Keywords: Cloud security, artificial intelligence, quantum-resistant cryptography, fuzzy systems, adaptive multi-layered framework
DOI: 10.3233/JIFS-233462
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-10, 2023
Authors: Kandan, M. | Durai Murugan, A. | Ramu, Gandikota | Ramu, Gandikota | Gnanamurthy, R.K. | Bordoloi, Dibyahash | Rawat, Swati | Murugesan, | Prasad, Pulicherla Siva
Article Type: Research Article
Abstract: Privacy-Preserving Fuzzy Commitment Schemes (PPFCS) have emerged as a promising solution for secure Internet of Things (IoT) device authentication, addressing the critical need for privacy and security in the rapidly growing IoT ecosystem. This paper presents a novel PPFCS-based authentication mechanism that protects sensitive user data and ensures secure communication between IoT devices. The proposed scheme leverages error-correcting codes (ECC) and cryptographic hash functions to achieve reliable and efficient authentication. The PPFCS framework allows IoT devices to authenticate themselves without revealing their true identity, preventing unauthorized access and preserving users’ privacy. Furthermore, our PPFCS-based authentication mechanism is resilient against various …attacks, such as replay, man-in-the-middle, and brute-force attacks, by incorporating secure random nonce generation and timely key updates. We provide extensive experimental results and comparative analysis, demonstrating that the proposed PPFCS significantly outperforms existing authentication schemes in terms of security, privacy, and computational efficiency. As a result, the PPFCS offers a viable and effective solution for ensuring secure and privacy-preserving IoT device authentication, mitigating the risks associated with unauthorized access and potential data breaches in the IoT ecosystem. Show more
Keywords: Privacy-preserving, fuzzy commitment, IoT device authentication, error-correcting codes, cryptographic hash functions
DOI: 10.3233/JIFS-234100
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-9, 2023
Authors: Sitharamulu, V. | Mahammad Rafi, D. | Naulegari, Janardhan | Battu, Hanumantha Rao
Article Type: Research Article
Abstract: In this study, we investigate the viability of applying fuzzy reinforcement learning (FRL) to Internet of Things-based robots for purposes of autonomous navigation and collision avoidance. The proposed approach utilises FRL, IoT, and a sensor network to give the robot the ability to learn from its environment and act in accordance with those policies. The authors used FRL to train a mobile robot with wheels to move around and avoid obstacles, and then they put the robot through its paces in a virtual world. Results showed that the FRL-based technique improved the robot’s navigation and collision avoidance performance compared to …traditional rule-based approaches. The results of this study indicate that FRL may be a viable technique for enabling autonomous navigation and obstacle avoidance in IoT-based robotics. Show more
Keywords: Fuzzy reinforcement learning, IoT-based robotics, autonomous navigation, collision avoidance, sensor network
DOI: 10.3233/JIFS-233860
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-11, 2023
Authors: Sharma, Amit | Naga Raju, M. | Hema, P. | Chaitanuya, Morsa | Jagannatha Reddy, M.V. | Vignesh, T. | Chandanan, Amit Kumar | Verma, Santhosh
Article Type: Research Article
Abstract: Wireless Sensor Networks (WSNs) have gained significant attention in recent years due to their wide range of applications, such as environmental monitoring, smart agriculture, and structural health monitoring. With the increasing volume of data generated by WSNs, efficient data analytics techniques are crucial for improving the overall performance and reducing energy consumption. This paper presents a novel distributed data analytics approach for WSNs using fuzzy logic-based machine learning. The proposed method combines the advantages of fuzzy logic for handling uncertainty and imprecision with the adaptability of machine learning techniques. It enables sensor nodes to process and analyze data locally, reducing …the need for data transmission and consequently saving energy. Furthermore, this approach enhances data accuracy and fault tolerance by incorporating the fusion of heterogeneous sensor data. The proposed technique is evaluated on a series of real-world and synthetic datasets, demonstrating its effectiveness in improving the overall network performance, energy efficiency, and fault tolerance. The results indicate the potential of our approach to be applied in various WSN applications that demand low-energy consumption and reliable data analysis. Show more
Keywords: Wireless sensor networks, distributed data analytics, fuzzy logic, machine learning, energy efficiency
DOI: 10.3233/JIFS-234007
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-11, 2024
Authors: Kumar, Manoj | Sharma, Sukhwinder | Mittal, Puneet | Singh, Harmandeep | Singh, Sukhwinder
Article Type: Research Article
Abstract: The rapid expansion of Internet of Things (IoT) applications and the increasing complexity of Wireless Sensor Networks (WSNs) have created a critical need for efficient load balancing strategies. This paper proposes a dynamic load balancing approach for IoT-enabled WSNs using a fuzzy logic-based control mechanism. The proposed method aims to optimize energy consumption, reduce latency, and enhance network lifetime by intelligently distributing the workload among sensor nodes. The fuzzy logic controller takes into account various parameters, such as energy levels, communication distances, and node density, to make adaptive load balancing decisions. The control mechanism allocates tasks to the most suitable …nodes, ensuring efficient utilization of resources and preventing overloading of individual nodes. Simulations are conducted in diverse network scenarios to validate the performance of the proposed approach. Results demonstrate significant improvements in energy efficiency, latency reduction, and overall network lifetime compared to traditional load balancing techniques. The fuzzy logic-based control mechanism proves to be a promising solution for addressing the dynamic and resource-constrained nature of IoT-enabled WSNs, paving the way for more robust and resilient networks in various IoT applications. Show more
Keywords: IoT, Wireless Sensor Networks, load balancing, fuzzy logic, network lifetime
DOI: 10.3233/JIFS-234075
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-11, 2024
Authors: Ganesh, Aurobind | Ramachandiran, R.
Article Type: Research Article
Abstract: Globally, the two main causes of young people dying are mental health issues and suicide. A mental health issue is a condition of physiological disorder that inhibits with the vital process of the brain. The amount of individuals with psychiatric illnesses has considerably increased during the past several years. The majority of individuals with mental disorders reside in India. The mental illness can have an impact on a person’s health, thoughts, behaviour, or feelings. The capacity of controlling one’s thoughts, emotions, and behaviour might help an individual to deal with challenging circumstances, build relationships with others, and navigate life’s problems. …With a primary focus on the healthcare domain and human-computer interaction, the capacity to recognize human emotions via physiological and facial expressions opens up important research ideas as well as application-oriented potential. Affective computing has recently become one of the areas of study that has received the greatest interest from professionals and academics in a variety of sectors. Nevertheless, despite the rise in articles published, the reviews of a particular aspect of affective computing in mental health still are limited and have certain inadequacies. As a result, a literature survey on the use of affective computing in India to make decisions about mental health issues is discussed. As a result, the paper focuses on how traditional techniques used to monitor and assess physiological data from humans by utilizing deep learning and machine learning approaches for humans’ affect recognition (AR) using Affective computing (AfC) which is a combination of computer science, AI, and cognitive science subjects (such as psychology and psychosocial). Show more
Keywords: Affective computing, mental Health, decision making, machine learning, deep learning
DOI: 10.3233/JIFS-235503
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-16, 2023
Authors: Prasad, Mal Hari | Swarnalatha, P.
Article Type: Research Article
Abstract: The model-based methods were utilized in order to produce the test cases for the behavioral model of a software system. Run test cases habitually or physically facilitates premature identification of requirement errors. Regression test suite design is thought-provoking as well as significant task in this automated test design. General techniques of regression testing comprise rerunning formerly accomplished tests as well as inspecting whether program behavior has modified as well as formerly fixed faults have recurred. Regression testing is carried out with the intension of assessing a system skillfully by means of logically picking the right least set of tests essential …to suitably cover a particular modification. Then again, the relapse testing occasions of experiment prioritization, test suite decrease, and relapse test choice are commonly focused on conditions, which recognize the experiments to pick or the experiment to run thusly in independent framework. As indicated by experiment prioritization, experiments are very much arranged ward upon some condition just as experiments with greatest need are run first to achieve a presentation objective. If there should be an occurrence of test suite decrease/minimization, experiment, which end up being ended over the long haul are dismissed from the test suite with the intension of making a minor arrangement of experiments. In the event of relapse test determination, from a prevalent unique suite, a subset of experiments is picked. Show more
Keywords: Test case prioritization, test criteria, generalized predictive control, rudder performance testing system
DOI: 10.3233/JIFS-233547
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-11, 2023
Authors: Vinoth Kumar, M. | Supreeth, B.R. | Hariprabhu, M. | Shanmuga Priya, P. | Ahmed, Ahmed Najat | Nagrare, Trupti | Mathur, Shruti | Manikandan, G.
Article Type: Research Article
Abstract: Containerized data centers (CDCs) have experienced rapid growth in recent years, owing to their modular and scalable nature. However, ensuring reliability and early fault detection in these complex systems is critical. This paper presents a novel Fuzzy Logic-based Fault Detection (FLFD) framework for CDCs using Digital Twins (DTs). The proposed approach employs DTs to create accurate virtual representations of the CDCs, which enable real-time monitoring and analysis of the physical systems. This paper focuses on three main aspects: (1) the development of a comprehensive DT model for CDCs, (2) the design and implementation of a FLFD algorithm, and (3) the …validation of the proposed approach through extensive simulations and real-world case studies. The FLFD algorithm leverages fuzzy logic principles to identify and localize faults in the system, thereby enhancing the overall fault detection accuracy and reducing false alarms. Results demonstrate the effectiveness of the proposed framework, with significant improvements in fault detection performance and system reliability. The FLFD approach offers a promising solution for proactive maintenance and management in containerized data centers, paving the way for more efficient and resilient operations. Show more
Keywords: Fuzzy logic, fault detection, containerized data centers, digital twins, proactive maintenance
DOI: 10.3233/JIFS-233736
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-10, 2023
Authors: Famila, S. | Jawahar, A. | Arthi, A. | Supriya, N. | Ramadoss, P.
Article Type: Research Article
Abstract: The maximization of lifetime in Wireless Sensor Networks (WSNs) is always made feasible by conserving energy and maintaining synchronization in the connectivity between its nodes. The selection of Cluster head (CH) methodology used during data dissemination process from the CH to the BS determines the energy conversation which is necessary for extending the network’s lifetime. Initially, the nodes are localized using Graphical Recurrent Neural Network. In this research, a hybrid monarchy butterfly and chicken swarm optimization based cluster head selection (HMB-CSO-CHS) method is used to enhance the lifespan of sensor networks. This suggested HMB-CSO-CHS Scheme uses the benefits of the …Hybrid Monarchy butterfly and chicken swarm optimization algorithm for the efficient selection of cluster heads by establishing reliable tradeoffs between their exploitation and exploration potentials with optimized convergence rate. The simulation-based investigation of the suggested HMB-CSO-CHS Scheme confirms its effectiveness in reducing the rate of mortality among the sensor nodes such that remarkable improvement in lifetime can be realized in the network When analyzing HMB-CSO-CHS method, it is noted that energy consumption and packet delivery ratio is completely reduced when comparing with existing methods. Show more
Keywords: Monarchy butterfly, chicken swarm optimization, cluster head selection, exploitation, exploration, best individual solution
DOI: 10.3233/JIFS-233681
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-10, 2023
Authors: Venkata Vidyalakshmi, Guggilam | Gopikrishnan, S.
Article Type: Research Article
Abstract: In the realm of Internet of Things (IoT) sensor data, missing patterns often occur due to sensor glitches and communication problems. Conventional missing data imputation methods struggle to handle multiple missing patterns, as they fail to fully leverage the available data as well as partially imputed data. To address this challenge, we propose a novel approach called Univariate data Imputation using Fast Similarity Search (UIFSS). The proposed method solved the missing data problem of IoT data using fast similarity search that can suits different patterns of missingness. Exploring similarities between data elements, a problem known as all-pairs-similarity-search, has been extensively …studied in fields like text analysis. Surprisingly, applying this concept to time series subsequences hasn’t seen much progress, likely due to the complexity of the task. Even for moderately sized datasets, the traditional approach can take a long time, and common techniques to speed it up only help a bit. Notably, for very large datasets, our algorithm can be easily adapted to produce high-quality approximate results quickly. UIFSS consists of two core components:Sensor sorting with Similar Node Clustering (SSNC) and Imputation Estimator using Fast Similarity Search(IEFSS). The SSNC, encompassing missing sensor sorting depending on their entropy to guide the imputation process. Subsequently, IEFSS uses global similar sensors and captures local region volatility, prioritizing data preservation while improving accuracy through z-normalized query based similarity search. Through experiments on simulated and bench mark datasets, UIFSS outperforms existing methods across various missing patterns. This approach offers a promising solution for handling missing IoT sensor data and with improved imputation accuracy. Show more
Keywords: Data imputation, internet of things, spatial correlation, univariate data, data quality, similarity search
DOI: 10.3233/JIFS-233446
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-19, 2023
Authors: Praba, M.S. Bennet | Subashka Ramesh, S.S.
Article Type: Research Article
Abstract: A unique system that offers traffic management, mobility management, and proactive vulnerability identification is the vehicular ad hoc network (VANET). With the use of efficient deep learning algorithms, intrusion prevention practices can improve their reliability. Many assaults, like Sybil, Blackhole, Wormhole, DoS attack, etc. expose them to risk. These intrusions compromise efficiency and dependability by taking advantage of network connectivity. The use of amazingly precise learning models to anticipate a variety of threats in VANET has not yet been thoroughly explored. To categorize numerous attacks on the VANET scenario, we develop a novel efficient integrated Long Short Term Memory (LSTM) …paradigm. The system employs the Panthera Leo Hunting Optimization (PLHO) method to modify the hyper-parameters of the systems to enhance the LSTM model’s detection rate under different threat situations. SUMO-OMNET++and Veins, two well-known modeling programs were utilized to gather the various VANET variables for both normal and malicious scenarios. The improved LSTM model was evaluated using actual information that had been recorded. The outcomes from the various learning models were merged with performance measures to show the algorithm’s efficiency and individuality. As the space between nearer vehicles reduces abruptly, a collision happens. So, to provide a realistic collision prevention system, it is necessary to collect exact and detailed information on the distance between every vehicle and all of the nearby vehicles. We suggest using a Carbon Nanotube Network (CNT) combined with the other Nanodevices to achieve reliability on the scale of millimeters. Modeling findings that the proposed novel approach succeeded with strong recognition capabilities. Show more
Keywords: Vehicular ad-hoc networks, traffic management, long short term memory, panthera leo hunting, nanotechnology devices
DOI: 10.3233/JIFS-234401
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-18, 2023
Authors: Elangovan, D. | Subedha, V.
Article Type: Research Article
Abstract: Opinion Mining and Sentiment Analysis acts as a pivotal role in facilitating businesses to actively operate on enhancing the business strategies and accomplish detailed insights of the consumer’s feedback regarding the products. In recent times, deep learning (DL)technique has been used for many sentiment analysis tasks and has attained effective outcomes. Huge quantity of product reviews is being posted by the customer on different e-commerce and social networking platforms which can assist the developers to improve the quality of the products. The study focuses on the design of Sentiment Classification on Online Product Reviews using Dwarf Mongoose Optimization with Attention …based Deep Learning (DMO-ABDL) model. The proposed DMO-ABDL technique analyzes the product reviews for the identification of sentiments. To accomplish this, the DMO-ABDL technique performs different stages of preprocessing to transform the actual data into suitable format. Furthermore, the Glove technique is employed for word embedding process. Moreover, attention based long short-term memory (ALSTM) approach was exploited for sentiment classification and its hyperparameters can be optimally chosen by the DMO technique. A comprehensive set of experiments were performed in order to guarantee the enhanced sentiment classification performance of the DMO-ABDL algorithm. A brief comparative study highlighted the supremacy of the DMO-ABDL technique over other existing approaches under different measures. Show more
Keywords: Sentiment analysis, natural language processing, hybrid models, deep learning, hyperparameter optimization
DOI: 10.3233/JIFS-233611
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-15, 2023
Authors: Abd Algani, Yousef Methkal | Babu, K. Suresh | Beram, Shehab Mohamed | Al Ansari, Mohammed Saleh | Tapia-Silguera, Ruben Dario | Borda, Ricardo Fernando Cosio | Bala, B. Kiran
Article Type: Research Article
Abstract: Growing older is a phenomenon that is associated with increasingly complex health situations as a result of the coexistence of several chronic diseases. As a result, there is a downward tendency in both older people and their caretakers’ quality of life, which frequently results in frailty. There are numerous solutions available to treat the issue, which primarily affects older people. The basic and most popular imaging method for predicting cognitive impairment is magnetic resonance imaging. Furthermore, few of the earlier models had a definite level of accuracy when diagnosing the condition. Further, there is a critical need to put in …place a stronger, more reliable approach to precise prediction. When compared to other procedures, using magnetic resonance images to predict cognitive decline is the safest and most straightforward. The advanced concept for a better optimized strategy to predict cognitive impairment at an early stage is presented in this research. The hybrid krill herd and grey wolf optimization method is offered as a solution to address the challenges in locating the impacted area. In a short amount of time, a significant number of MRI images are analyzed, and the results show a more precise or higher rate of recognition. Show more
Keywords: Fuzzy model, soft computing, cognitive impairment, dementia, fuzzy C-Means clustering
DOI: 10.3233/JIFS-233695
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-12, 2023
Authors: Pradeep, M. | Sivaji, U. | Nithya, B. | Kadiravan, G. | Preethi, D. | Painam, Ranjith Kumar
Article Type: Research Article
Abstract: The mapping function must identify the reference model and detect coordinate arrangement by observing a repository with deep learning. Progression model with coordinate arrangement composition should have various positional displacements from one location to another. A prerogative classification model is an evolution of factor accomplishment in a repository method. Coordinate arrangement with calculation method must formulate a model locality twirl in classification method of a reference in dominance factor of perpetuity position observation by procession of reference localities. In a procession model observation by location, tendency method should be rotated from locality position into another coordinate method, with a PDD …factor measuring DPA of cadent RFT with an origin of 92.6, a cadent DS intermediate factor of 95.2, culmination factor of cadent RFT of 94.1. The docile exploratory arrangement of heuristic parameters is used in existing system to perceive phenomena such as sprout, enrollment discernment, demeanour, gravest perforation measure, Model of a heretic in apprehension method by premonition incongruity. Annotation should identify classification process using a proposed model to obtain massive measure of imputation function, In PDD measure of DPA in Cadent DS, with inception of 96.1, intercession of Cadent RFT in 92.6, with crowning of Cadent RFT in 96.4, 93.2 Show more
Keywords: MRCAI, Goin Twirl, maginot, idiosyncrasy outline, coffer atavism, flocculent utter eminence kedge
DOI: 10.3233/JIFS-234739
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-18, 2023
Authors: Ahamed, Ayoobkhan Mohamed Uvaze | Joel Devadass Daniel, D.J. | Seenivasan, D. | Rukumani Khandhan, C. | Radhakrishnan, S. | Daya Sagar, K.V. | Bhardwaj, Vivek | Nishant, Neerav
Article Type: Research Article
Abstract: Time-sensitive programs that are linked to smart services, such as smart healthcare as well as smart cities, are supported in large part by the fog computing domain. Due to the increased speed limitation of the cloud, Cloud Computing (CC) is a competent platform for fog in data processing, but it is unable to meet the demands of time-sensitive programs. The procedure of resource provisioning, as well as allocation in either a fog-cloud structure, takes into account dynamic changes in user requirements, and resources with limited access in fog devices are more difficult to manage. Due to the continual changes in …user requirement factors, the deadline represents the biggest obstacle in the fog computing structure. Hence the objective is to minimize the total cost involved in scheduling by maximizing resource utilization. For dynamic scheduling in the fog-cloud computing model, the efficiency of hybridization of the Grey Wolf Optimizer (GWO) and Lion Algorithm (LA) is developed in this study. In terms of energy costs, processing costs, and communication costs, the created GWOMLA-based Deep Belief Network (DBN) performed better and outruns the other traditional models. Show more
Keywords: Fog-cloud computing environment, deep learning, deep belief network (DBN), lion algorithm (LA), grey wolf optimizer (GWO).
DOI: 10.3233/JIFS-234030
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-14, 2023
Authors: Rajesh Kanna, R. | Ulagamuthalvi, V.
Article Type: Research Article
Abstract: Diagnosis is given top priority in terms of farm resource allocation, because it directly affects the GDP of the country. Crop analysis at an early stage is important for verifying the efficient crop output. Computer vision has a number of intriguing and demanding concerns, including disease detection. After China, India is the world’s second-largest creator of wheat. However, there exist algorithms that can accurately identify the most prevalent illnesses of wheat leaves. To help farmers keep track on a large area of wheat plantation, leaf image and data processing techniques have recently been deployed extensively and in pricey systems. In …this study, a hybrid pre-processing practice is used to remove undesired distortions while simultaneously enhancing the images. Fuzzy C-Means (FCM) is used to segment the affected areas from the pre-processed images. The data is then incorporated into a disease classification model using a Convolutional Neural Network (CNN). It was tested using Kaggle data and several metrics to see how efficient the suggested approach was. This study demonstrates that the traditional Long-Short Term Memory (LSTM) technique achieved 91.94% accuracy on the input images, but the hybrid pre-processing model with CNN achieved 95.06 percent accuracy. Show more
Keywords: Plant leaves diseases, convolutional neural network, fuzzy c-means, wheat production, pre-processing techniques
DOI: 10.3233/JIFS-233672
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-11, 2023
Authors: Prabu Shankar, K.C. | Shyry, S. Prayla
Article Type: Research Article
Abstract: Early detection of diseases in men and women can improve treatment and reduce the risk involved in human life. Nowadays techniques which are non-invasive in nature are popularly used to detect the various types of diseases. Histopathological analysis plays a major role in finding the nature of the disease through medical images. Manual interpretation of these medical imaging takes time, is tedious, subjective, and can have human errors. It has also been discovered that the interpretation of these images varies amongst diagnostic labs. As computer power and memory capacity have increased, methodologies and medical image processing techniques have been developed …to interpret and analyse these images as a substitute for human involvement. The challenge lies in devising an efficient pre-processing technique that helps in analysing, processing and preparing the medical image for further diagnostics. This research provides a hybrid technique that reduces noise in the NITFI medical image by using a 2D adaptive median filter at level 1. The edges of the filtered medical image are preserved using the modified CLAHE algorithm which preserves the local contrast of the image. Expectation Maximization (EM) algorithm extracts the ROI part of the image which helps in easy and accurate identification of the disease. All the three steps are run over the 3D image slices of a NIFTI image. The proposed method proves that it achieves close to ideal RMSE, PSNR and UQI values as well as achieves an average runtime of 37.193 seconds for EM per slice. Show more
Keywords: 2D adaptive, expectation maximization, NIFTI, UQI, edge preservation, 3D slice, computational intelligence
DOI: 10.3233/JIFS-233931
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-16, 2023
Authors: Rajendran, Aishwarya | Ganesan, Sumathi | Rathis Babu, T.K.S.
Article Type: Research Article
Abstract: Brain tumor is observed to be grown in irregular shape and presented deep inside the tissues that led to cancer. Human brain tumor identification and categorization are performed with high latency, but also an essential task for the medical experts. The assistance through the automated diagnosis is generally utilized for the advancement in the diagnosis ability in order to get superior accuracy in brain tumor detection. Although the researches are enhancing the brain tumor detection performance, the highly challenging is to segment the brain tumor since it has variability concerning the tumor type, contrast, image modality and also in other …factors. To meet up all the challenges, a novel classification method is introduced using segmentation and machine learning approaches. Initially, the required images are collected from benchmark data sources. The input images are undergone for pre-processing stage, where it is done via “Contrast Limited Adaptive Histogram Equalization (CLAHE) and filtering methods”. Further, the pre-processed imagesare given as input to two classifier models as “Residual Network (ResNet) and Gated Recurrent Unit (GRU)”, in which the model provide the result as normal and abnormal images. In the second part, obtained abnormal image acts an input for segmentation step. In segmentation, it is needed to extract the relevant features by texture and spatial features. The resultant features are subjected for optimizing, where the optimal features are acquired through Adaptive Coyote Optimization Algorithm (ACOA). Then, the extracted features are fed into machine learning model like “Support Vector Machine (SVM), Artificial Neural Network (ANN), and Random Forest (RF)” to render the segmented image. Finally, the hybrid classification named Hybrid ResGRUis developed by integrating the ResNet and GRU, where the hyper parameters are tuned optimally using developed ACOA, thus it is used for classifying the abnormal image that belongs to benign stage or malignant stage. The experimental results are evaluated, and its performance is analyzed by various metrics. Hence, the proposed classification model ensures effective segmentation and classification performance. Show more
Keywords: Brain tumour segmentation and classification, adaptive coyote optimization algorithm, residual network, gated recurrent unit, ensemble machine learning-based tumor segmentation, deep learning-based classification
DOI: 10.3233/JIFS-233546
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-15, 2023
Authors: Abdus Subhahan, D. | Vinoth Kumar, C.N.S.
Article Type: Research Article
Abstract: The worldwide deforestation rate worsens year after year, ultimately resulting in a variety of severe implications for both mankind and the environment. In order to track the success of forest preservation activities, it is crucial to establish a reliable forest monitoring system. Changes in forest status are extremely difficult to manually annotate due to the tiny size and subtlety of the borders involved, particularly in regions abutting residential areas. Previous forest monitoring systems failed because they relied on low-resolution satellite images and drone-based data, both of which have inherent limitations. Most government organizations still use manual annotation, which is a …slow, laborious, and costly way to keep tabs on data. The purpose of this research is to find a solution to these problems by building a poly-highway forest convolution network using deep learning to automatically detect forest borders so that changes over time may be monitored. Here initially the data was curated using the dynamic decomposed kalman filter. Then the data can be augmented. Afterward the augmented image features can be fused using the multimodal discriminant centroid feature clustering. Then the selected area can be segmented using the iterative initial seeded algorithm (IISA). Finally, the level and the driver of deforestation can be classified using the poly-highway forest convolution network (PHFCN). The whole experimentation was carried out in a dataset of 6048 Landsat-8 satellite sub-images under MATLAB environment. From the result obtained the suggested methodology express satisfied performance than other existing mechanisms. Show more
Keywords: Deforestation, dynamic decomposed kalman filter, multimodal discriminant centroid feature clustering, iterative initial seeded algorithm, poly-highway forest convolution network
DOI: 10.3233/JIFS-233534
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-15, 2023
Authors: Agrawal, Monika | Moparthi, Nageswara Rao
Article Type: Research Article
Abstract: Sentiment analysis (SA)at the sentence, aspect, and document levels determines the sentiment of particular aspect phrases in a given sentence. Due to their capacity to extract sentiment information from text in aspect-level sentiment classification, neural networks (NNs) have achieved significant success. Generally speaking, sufficiently sizable training corpora are necessary for NNs to be effective. The performance of NN-based systems is reduced by the small size of the aspect-level corpora currently available. In this research, we suggest a gated bilateral recurrent neural network (G-Bi-RNN) as a foundation for multi-source data fusion, their system offers sentiment information that several sources. We develop …a uniform architecture specifically to include information from sentimental lexicons, including aspect- and sentence-level corpora. To further provide aspect-specific phrase representations for SA, we use G-Bi-RNN, a deep bilateral Transformer-based pre-trained language model. We assess our methods using SemEval 2014 datasets for laptops and restaurants. According to experimental findings, our method consistently outperforms cutting-edge techniques on all datasets. We use a number of well-known aspect-level SA datasets to assess the efficacy of our model. Experiments show that when compared to baseline models, the suggested model can produce state-of-the-art results. Show more
Keywords: Sentiment analysis (SA), gated bilateral recurrent neural network (G-Bi-RNN), language model
DOI: 10.3233/JIFS-234076
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-11, 2023
Authors: Pughazendi, N. | Valarmathi, K. | Rajaraman, P.V. | Balaji, S.
Article Type: Research Article
Abstract: Internet of Things (IoT) devices installed in hospital direct data unceasingly; in this manner, energy usage augments with the number of broadcasts too. In this paper, Reliable Cluster based Data Collection Framework (RCDCF) for IoT-Big Data Healthcare Applications (HA) is developed. During clustering process, the connected IoT devices are grouped into clusters. In clustering technique, the available IoT devices are gathered into groups. The device with high battery capacity and processing ability is selected as a cluster head (CH). Each member of the cluster is allocated multiple slots by applying a general function pooled by the Fog node and the …entire devices. To perceive and eliminate outliers from the sensor data, Density-based spatial clustering of applications with noise (DBSCAN) method is utilized. To forecast the objective and subjective behaviours of the equipments, a Random Forest Deep Neural Network (RF-DNN) based classification model is utilized. By experimental results, it has been shown that RCDCF achieves 19% and 20% reduced energy consumption at Cloud and Fog centers, respectively. Moreover, RCDCF has 2.1% and 1.3% increased correctness of data at Cloud and Fog data centers, respectively, when compared to the existing framework. Show more
Keywords: Internet of Things (IoT), big data, cloud, clustering, health care solution, slot allocation, Random Forest Deep Neural Network (RF-DNN), categorization
DOI: 10.3233/JIFS-233505
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-10, 2023
Authors: Subburaj, S. | Murugavalli, S. | Muthusenthil, B.
Article Type: Research Article
Abstract: SLR, which assists hearing-impaired people to communicate with other persons by sign language, is considered as a promising method. However, as the features of some of the static SL could be the same as the feature in a single frame of dynamic Isolated Sign Language (ISL), the generation of accurate text corresponding to the SL is necessary during the SLR. Therefore, Edge-directed Interpolation-based Recurrent Neural Network (EI-RNN)-centered text generation with varied features of the static and dynamic Isolated SL is proposed in this article. Primarily, ISL videos are converted to frames and pre-processed with key frame extraction and illumination control. …After that, the foreground is separated with the Symmetric Normalised Laplacian-centered Otsu Thresholding (SLOT) technique for finding accurate key points in the human pose. The human pose’s key points are extracted with the Media Pipeline Holistic (MPH) pipeline approach and to improve the features of the face and hand sign, the resultant frame is fused with the depth image. After that, to differentiate the static and dynamic actions, the action change in the fused frames is determined with a correlation matrix. After that, to engender the output text for the respective SL, features are extracted individually as of the static and dynamic frames. It is obtained from the analysis that when analogized to the prevailing models, the proposed EI-RNN’s translation accuracy is elevated by 2.05% in INCLUDE 50 Indian SL based Dataset and Top 1 Accuracy 2.44% and Top 10 accuracy, 1.71% improved in WLASL 100 American SL. Show more
Keywords: Isolated Sign Language (ISL), Sign Language Recognition (SLR), Edge directed Interpolation based Recurrent Neural Network (EIRNN), text generation, word level sign language, Media Pipeline Holistic (MPH)
DOI: 10.3233/JIFS-233610
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-15, 2023
Authors: Prasath, N. | Arun, A. | Saravanan, B. | Kamaraj, Kanagaraj
Article Type: Research Article
Abstract: Intelligent Fuzzy Edge Computing (IFEC) has emerged as an innovative technology to enable real-time decision-making in Internet of Things (IoT)-based Digital Twin environments. Digital Twins provide virtual models of physical systems, facilitating predictive maintenance and optimization. However, implementing real-time decision-making in these environments is challenging due to massive data volumes and need for quick response times. IFEC addresses this by offering a flexible, scalable and efficient platform for real-time decision-making. This paper presents an overview of key aspects of IFEC including fuzzy logic, edge computing and Digital Twins. The use of fuzzy logic in IFEC provides an adaptive framework for …handling uncertainties in data. Edge computing enables localized processing, reducing latency. The integration of Digital Twins allows system monitoring, analysis and optimization. Potential applications of IFEC are highlighted in domains such as manufacturing, healthcare, energy management and transportation. Recent advancements in IFEC are also discussed, covering new fuzzy inference systems, edge computing architectures, Digital Twin modeling techniques and security mechanisms. Overall, IFEC shows great promise in enabling real-time decision-making in complex IoT-based Digital Twin environments across various industries. Further research on IFEC will facilitate the ongoing digital transformation of industrial systems. Show more
Keywords: Intelligent fuzzy edge computing, real-time decision making, IoT-based digital twins, predictive maintenance, fuzzy logic, edge computing
DOI: 10.3233/JIFS-233495
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-12, 2023
Authors: Vishnukumar, Ravula | Ramaiah, Mangayarkarasi
Article Type: Research Article
Abstract: The Internet’s evolution resulted in a massive amount of data. As a result, the internet has become more sophisticated and vulnerable to massive attacks. The attack detection system is a key feature for system security in modern networks. The IDS might be signature-based or detect anomalous behavior. Researchers recently created several detection algorithms for identifying network intrusions in vehicular network security, but they failed to detect intrusions effectively. For this reason, the optimal Deep Learning approach, namely Political Fractional Dingo Optimizer (PFDOX)-based Deep belief network is introduced for attack detection in network security for vehicles. The Internet of Vehicle simulation …is done initially, and then the input data is passed into the pre-processing phase, which removes noise present in the data. Then, the feature extraction module receives the pre-processed data. The Deep Maxout Network is trained using the Fractional Dingo optimizer (FDOX)is utilized to detect normal and abnormal behavior. Fractional calculus and Dingo optimizer (DOX) are combined to create the proposed FDOX. Finally, intruder/attack types are classified using the Deep Belief Network, which is tuned using the PFDOX. The PFDOX is created by the assimilation of the DOX, Fractional Calculus, and Political Optimizer (PO). The experimental result shows that the designed PFDOX_DBN for attack type classification offers a better result based on f-measure, precision, and recall with the values of 0.924, 0.916, and 0.932, for the CIC-IDS2017 dataset. Show more
Keywords: Deep maxout network, intrusion detection, deep belief network, dingo optimizer, fractional calculus, political optimizer
DOI: 10.3233/JIFS-233581
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-18, 2023
Authors: Nandipati, Bhagya Lakshmi | Devarakonda, Nagaraju
Article Type: Research Article
Abstract: Lung cancer incidence and mortality continue to rise rapidly around the world. According to the American Cancer Society, the five-year survivability for individuals in the metastasis phases is significantly lower, highlighting the importance of early lung cancer diagnosis for effective therapy and improved quality of life. To achieve this, it is crucial to combine PET’s sensitivity for recognizing abnormal regions with CT’s anatomical localization for evaluating PET-CT images in computer-assisted detection implementations. Current PET-CT image evaluation methods either run each modality independently or aggregate the data from both, but they often overlook the fact that different visual features encode different …types of data from different modalities. For instance, high atypical PET uptake within the lungs is more crucial for identifying tumors compared to physical PET uptake in the heart. To address the challenges of fine-grained issues during feature extraction and fusion, we propose an interpretable deep learning-based solution for lung cancer diagnosis using CT and PET images. This involves building an Optimal Adversarial Network for merging and an Optimal Attention-based Generative Adversarial Network with Classifier (Opt_att-GANC) to augment the classification of the existence and nonexistence of lung cancer based on extracted features. The performance of the Opt_att-GANC is compared with existing methodologies like global-feature encoding U-Net (GEU-Net), 3D Dense-Net, and 3D Convolutional Neural Network Technique (3D-CNN). Results show that the proposed Opt_att-GANC achieves an F1-score of 67.08%, 93.74% accuracy, 92% precision, 92.1% recall, and 93.74% recall. The prospective study aims to enhance the precision degree with reduced duration by incorporating an ensemble neural network paradigm for feature extraction. Show more
Keywords: Lung cancer, fuzzy fusion, feature extraction, classification, neural networks, Adversarial network, PET
DOI: 10.3233/JIFS-233491
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-15, 2023
Authors: Luo, Binghui | Liu, Xin | Qin, Long | Jiao, Xiaolong | Li, Wengui
Article Type: Research Article
Abstract: The short text matching models can be roughly divided into representation-based and interaction-based approaches. However, current representation-based text matching models often lack the ability to handle sentence pairs and typically only perform feature interactions at the network’s top layer, which can lead to a loss of semantic focus. The interactive text matching model has significant shortcomings in extracting differential information between sentences and may ignore global information. To address these issues, this article proposes a model structure that combines a dual-tower architecture with an interactive component, which compensates for their respective weaknesses in extracting sentence semantic information. Simultaneously, a method …for integrating semantic information is proposed, enabling the model to capture both the interactive information between sentence pairs and the differential information between sentences, thereby addressing the issues with the aforementioned approaches. In the process of network training, a combination of cross-entropy and cosine similarity is used to calculate the model loss. The model is optimized to a stable state. Experiments on the commonly used datasets of QQP and MRPC validate the effectiveness of the proposed model, and its performance is stably improved. Show more
Keywords: Short text matching, representational structure, interactive structure, BERT, multi-angle information
DOI: 10.3233/JIFS-230268
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-13, 2024
Authors: Diao, Xiu-Li | Zhang, Hao-Ran | Zeng, Qing-Tian | Song, Zheng-Guo | Zhao, Hua
Article Type: Research Article
Abstract: At present, the Chinese text field is facing challenges from low resource issues such as data scarcity and annotation difficulties. Moreover, in the domain of cigarette tasting, cigarette tasting texts tend to be colloquial, making it difficult to obtain valuable and high-quality tasting texts. Therefore, in this paper, we construct a cigarette tasting dataset (CT2023) and propose a novel Chinese text classification method based on ERNIE and Comparative Learning for Low-Resource scenarios (ECLLR). Firstly, to address the issues of limited vocabulary diversity and sparse features in cigarette tasting text, we utilize Term Frequency-Inverse Document Frequency (TF-IDF) to extract key terms, …supplementing the discriminative features of the original text. Secondly, ERNIE is employed to obtain sentence-level vector embedding of the text. Finally, contrastive learning model is used to further refine the text after fusing the keyword features, thereby enhancing the performance of the proposed text classification model. Experiments on the CT2023 dataset demonstrate an accuracy rate of 96.33% for the proposed method, surpassing the baseline model by at least 11 percentage points, and showing good text classification performance. It is thus clear that the proposed approach can effectively provide recommendations and decision support for cigarette production processes in tobacco companies. Show more
Keywords: Low-resource, Cigarette Tasting, Contrastive Learning, Text classification
DOI: 10.3233/JIFS-237816
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-15, 2024
Authors: Ledesma Roque, Diana Anahí | Kolesnikova, Olga | Menchaca Méndez, Ricardo
Article Type: Research Article
Abstract: This study addresses the issue of semantic similarity in sentences using the BERT model through various aggregation techniques, such as max-pooling, mean-pooling, and an LSTM network applied to the output of the BERT model. Subsequently, the linguistic interpretability of the BERT-Base transformer model is analyzed through the unsupervised learning approach, specifically through dimensionality reduction using autoencoders and clustering algorithms, utilizing the representation of the classification token CLS. The results highlight that the CLS classification token achieves better abstractions than the proposed methods. In terms of interpretability, it is observed that sequence length is relevant in the early layers, with …a gradual decrease across the layers. Additionally, attention to semantic similarity is concentrated in the intermediate and upper layers, especially in layers 6, 8, 9, and 10. All these findings were obtained by addressing the semantic similarity task using the STS-Benchmark dataset. Show more
Keywords: Linguistic interpretability, aggregation methods, unsupervised learning, attention mechanisms, token CLS
DOI: 10.3233/JIFS-219359
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-14, 2024
Authors: Cardoso-Moreno, Marco A. | Luján-García, Juan Eduardo | Yáñez-Márquez, Cornelio
Article Type: Research Article
Abstract: In this study, a thorough analysis of the proposed approach in the context of emotion classification using both single-modal (A-13sbj) and multi-modal (B-12sbj) sets from the YAAD dataset was conducted. This dataset encompassed 25 subjects exposed to audiovisual stimuli designed to induce seven distinct emotional states. Electrocardiogram (ECG) and galvanic skin response (GSR) biosignals were collected and classified using two deep learning models, BEC-1D and ELINA, along with two different preprocessing techniques, a classical fourier-based filtering and an Empirical Mode Decomposition (EMD) approach. For the single-modal set, this proposal achieved an accuracy of 84.43±30.03, precision of 85.16±28.91, and F1-score of …84.06±29.97. Moreover, in the extended configuration the model maintained strong performance, yielding scores of 80.95±22.55, 82.44±24.34, and 79.91±24.55, respectively. Notably, for the multi-modal set (B-12sbj), the best results were obtained with EMD preprocessing and the ELINA model. This proposal achieved an improved accuracy, precision, and F1-score scores of 98.02±3.78, 98.31±3.31, and 97.98±3.83, respectively, demonstrating the effectiveness of this approach in discerning emotional states from biosignals. Show more
Keywords: Emotion classification, signal preprocessing, convolutional neural network, ECG, GSR, EMD
DOI: 10.3233/JIFS-219334
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-9, 2024
Authors: Yigezu, Mesay Gemeda | Kolesnikova, Olga | Gelbukh, Alexander | Sidorov, Grigori
Article Type: Research Article
Abstract: The rise of social media and micro-blogging platforms has led to concerns about hate speech, its potential to incite violence, psychological trauma, extremist beliefs, and self-harm. We have proposed a novel model, Odio-BERT for detecting hate speech using a pretrained BERT language model. This specialized model is specifically designed for detecting hate speech in the Spanish language, and when compared to existing models, it consistently outperforms them. The study provides valuable insights into addressing hate speech in the Spanish language and explores the impact of domain tasks.
Keywords: BERT, hate speech, domain task, fine tune, Odio-BERT, Spanish
DOI: 10.3233/JIFS-219349
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-12, 2024
Authors: Liang, Weijing | Xue, Ye | Xu, Jing
Article Type: Research Article
Abstract: With the increasing global disaster risks, constructing more inclusive, flexible, and resilient communities has become crucial for effectively carrying out disaster prevention, mitigation, and relief work. However, existing research on community resilience mostly focuses on the selection of key factors and the assessment of community resilience, lacking in-depth exploration of the interactions between factors and simulation studies of key paths. Therefore, this paper applies the Fuzzy Decision-Making Trial and Evaluation Laboratory (Fuzzy DEMATEL) method to select important factors of community resilience. Based on this, the maximum average difference entropy method is used to analyze the relationships and influence mechanisms among …different factors, thus identifying the key factors and key paths affecting community resilience. The Fuzzy Cognitive Map (FCM) is then used to simulate the paths. The study finds that factors of community resilience can be categorized as input, intermediary, and output types, and further analysis of their influence mechanisms reveals four key paths and four key factors. Through pathway simulation, different improvement states of community resilience are observed when triggering the input-type factors of the key paths. Therefore, under limited resources, a phased and systematic approach to enhancing community resilience should be adopted. The contribution of this study lies in providing a comprehensive analysis of factors and pathway selection methods, and through pathway simulation, it offers a scientific basis and decision support for improving and constructing community resilience in practice. Show more
Keywords: Fuzzy cognitive map, fuzzy DEMATEL, maximum average difference entropy method, community resilience, simulation analysis
DOI: 10.3233/JIFS-232234
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-23, 2024
Authors: Zhang, Shuguang | Xie, Chengyuan | Zhang, Heng | Gong, Wenzheng | Liu, Lingjie | Zhi, Xuntao
Article Type: Research Article
Abstract: Graph Convolutional Networks (GCN) are prevalent techniques in collaborative filtering recommendations. However, current GCN-based approaches for collaborative filtering recommendation have limitations in effectively embedding neighboring nodes during node and neighbor information aggregation. Furthermore, weight allocation for the user (or item) representations after convolution of each layer is too uniform. To resolve these limitations, we propose a new Graph Convolutional Collaborative Filtering recommendation method based on temporal information during the node aggregation process (TA-GCCF). The method aggregates and propagates information using Gated Recurrent Units, while dynamically updating features based on the timing and sequence of interactions between nodes and their neighbors. …Concurrently, we have developed a convolution attention coefficient to ascertain the significance of embedding at distinct layers. Experiments on three benchmark datasets show that our method significantly outperforms the comparison methods in the accuracy of prediction. Show more
Keywords: Graph convolutional neural network, collaborative filtering, recommendation, gated recurrent units, temporal information
DOI: 10.3233/JIFS-238307
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-10, 2024
Authors: Vela-Rincón, Virna V. | Mújica-Vargas, Dante | Luna-Álvarez, Antonio | Arenas Muñiz, Andrés Antonio | Cruz-Prospero, Luis A.
Article Type: Research Article
Abstract: Image segmentation is a very studied area, looking for the best clustering of pixels. However, it is sometimes a complicated task, especially when these pixels are at the edges of regions, where there is a gradient and it is difficult to decide to which region to assign it. Hesitating fuzzy sets (HFS) better describe these situations, allowing to have multiple possible values for each element, giving more flexibility. This type of sets has been mainly applied in decision-making problems, obtaining better results than other types of fuzzy sets. This research proposes a fast and automatic method based on fuzzy hesitant …clustering (FAHFC), which does not require parameters since it is capable of determining the number of clusters, using the Calinski-Harabasz index, in which the segmentation is performed, solving the initialization problem in clustering; it also proposes an alternative to construct the HFS through the use of fuzzy relations. The experiments show superiority in terms of clustering quality and convergence over some selected state-of-the-art algorithms. Show more
Keywords: Fuzzy clustering, hesitant fuzzy sets, image segmentation, Calinski-Harabasz index
DOI: 10.3233/JIFS-219370
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-13, 2024
Authors: Milovanović, Vladimir | Aleksić, Aleksandar | Milenkov, Marjan | Sokolović, Vlada
Article Type: Research Article
Abstract: The paper aims to present a hybrid model for measuring the performance of business processes in complex organizations based on the subjective decision-making of expert teams. The subject of the research is finding ways to measure, analyze and improve the key performance indicators (KPIs) process. Obtaining the values of KPIs, which reflect the real state of the process, creates a basis for their ranking, i.e. insight into KPIs that are extremely important for the process as well as KPIs that are of lesser importance, but as such are not excluded from consideration because they are necessary for the beginning, realization …and completion of the process. The model was compiled through five phases and was tested through a case study in a real business organization, which deals with the maintenance of complex combat systems. The obtained results helped the management to take certain measures in order to improve the performance of the maintenance process. In the model, it is proposed to form two expert teams, which make assessments based on experience and express them in linguistic terms according to a predefined scale. Modeling of linguistic expressions is realized using intuitive fuzzy sets of a higher order, more precisely Fermatean fuzzy sets (FFS). Selecting KPIs, decomposing the process into sub-processes and assessing the relative importance of sub-processes is carried out by one team of experts, while another team carries out the assessment of KPIs at the level of each sub-process. Determining the relative importance of sub-processes is realized using the Delphi method extended to FFS while reaching a consensus. The measurement of process performance, i.e. the value of KPIs, is realized using Multi-Criteria Group Decision-Making (MCGDM), such as the ELECTRE method extended with FFS. The sensitivity analysis of the developed model is realized by uncertainty modeling with q-rung orthopair fuzzy sets. Show more
Keywords: Fermatean fuzzy set (FFSs), ELECTRE method, Delphi method, maintenance, performance
DOI: 10.3233/JIFS-238907
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-17, 2024
Authors: Xin, Ling
Article Type: Research Article
Abstract: In the era of digital economy, the optimization of enterprise supply chain networks has become a key challenge, while the problems of traditional supply chains, including information asymmetry and lack of trust, seriously hinder the development of enterprise supply chain networks. This paper will use the blockchain distributed technology and the digital economy background to explore how to use the blockchain distributed technology to optimize the existing problems. Firstly, study the supply chain information sharing to develop resources to reduce costs, then use the application of block chain technology and smart contract to establish information sharing mechanism to help the …supply chain information more transparent and improve trust; secondly, use the block chain technology decentralized storage model to realize the decentralized supply chain research, and finally use the consensus method to improve the privacy protection of information, to avoid information asymmetry among users. Through experiments, it could be found that the optimization method of enterprise supply chain network based on blockchain distributed technology had a traceability accuracy of over 92.35% for the extracted products, with an average traceability accuracy of 93.791% for 10 products. Research on the transparency of different supply chain information was above 89.73% . By utilizing blockchain distributed technology, information protection in enterprise supply chains could be effectively improved; trust mechanisms could be better established; risk control effectiveness could be improved; optimization of enterprise supply chain networks could be better assisted. Show more
Keywords: Enterprise supply chain network optimization, blockchain distributed technology, digital economy, smart contracts, deep learning
DOI: 10.3233/JIFS-234664
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-13, 2024
Authors: Cruz, Eddy Sánchez-Dela | Fuentes-Ramos, Mirta | Loeza-Mejía, Cecilia-Irene | José-Guzmán, Irahan-Otoniel
Article Type: Research Article
Abstract: Purpose: Vaginal infections are prevalent causes of gynecological consultations. This study introduces and evaluates the efficacy of four Machine Learning algorithms in detecting vaginitis cases in southern Mexico. Methods: Utilizing Simple Perceptron, Naïve Bayes, CART, and AdaBoost, we conducted classification experiments to identify four vaginitis subtypes (gardnerella, candidiasis, trichomoniasis, and chlamydia) in 600 patient cases. Results: The outcomes are promising, with a majority achieving 100% accuracy in vaginitis identification. Conclusion: The successful implementation and high accuracy of these algorithms demonstrate their potential as valuable diagnostic tools for vaginal infections, particularly in southern Mexico. It …is crucial in a region where health technology adoption lags behind, and intelligent software support is limited in gynecological diagnoses. Show more
Keywords: Machine learning, gynecological pathologies, vaginitis, local dataset, correct identification
DOI: 10.3233/JIFS-219377
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-14, 2024
Authors: Xie, Mengtong | Chai, Huaqi
Article Type: Research Article
Abstract: A human resources management plan is presently recognised as one of the most important components of a corporate technique. This is due to the fact that its major purpose is to interact with people, who are the most precious asset that an organisation has. It is impossible for an organisation to achieve its objectives without the participation of individuals. An organisation may effectively plan as well as manage individual processes to support the organization’s objectives and adapt nimbly to any change if it has well-prepared HR techniques and an action plan for its execution. This investigation puts up a fresh …way for the board of directors of a private firm to increase their assets and advance their growth by using cloud programming that is characterised by networks. The small company resource has been improved by strengthening human resource management techniques, and the cloud SDN network is used for job scheduling using Q-convolutional reinforcement recurrent learning. The proposed technique attained Quadratic normalized square error of 60%, existing SDN attained 55%, HRM attained 58% for Synthetic dataset; for Human resources dataset propsed technique attained Quadratic normalized square error of 62%, existing SDN attained 56%, HRM attained 59%; proposed technique attained Quadratic normalized square error of 64%, existing SDN attained 58%, HRM attained 59% for dataset. Show more
Keywords: Small business management, cloud software defined networks, human resource management, task scheduling, recurrent learning
DOI: 10.3233/JIFS-235379
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-11, 2024
Authors: Cortés-Antonio, Prometeo | Valdez, Fevrier | Melin, Patricia | Castillo, Oscar
Article Type: Research Article
Abstract: The computing with words is an approach that has unique characteristics and advantages to model cognitive processes, this article explains the relationship and difference between type-1 and type-2 fuzzy sets in the definition of linguistic values. Here, we perform a compressive review and justify because type-2 sets are more appropriate in modeling linguistic values, and a heuristic procedure by examples is carried out to define linguistic values on a continuous variable. A visual comparison of a rule-based system, when linguistic values use crips, type-1, and type-2 fuzzy sets in modeling a cognitive system.
Keywords: Type-2 and type-1 fuzzy sets, linguistic values and variables, rule-based systems, cognitive computing
DOI: 10.3233/JIFS-219368
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-11, 2024
Authors: Li, Jia | Xue, Shuaihao | Li, Minghui | Shi, Xiaoqiu
Article Type: Research Article
Abstract: Combining the harmony search algorithm (HS) with the local search algorithm (LS) can prevent the HS from falling into a local optimum. However, how LS affects the performance of HS has not yet been studied systematically. Therefore, in this paper, it is first proposed to combine four frequently used LS with HS to obtain several search algorithms (HSLSs). Then, by taking the flexible job-shop scheduling problem (FJSP) as an example and considering decoding times, study how the parameters of HSLSs affect their performance, where the performance is evaluated by the difference rate based on the decoding times. The simulation results …mainly show that (I) as the harmony memory size (HMS) gradually increases, the performance of HSLSs first increases rapidly and then tends to remain unchanged, and HMS is not the larger the better; (II) as harmony memory considering rate increases, the performance continues to improve, while the performance of pitch adjusting rate on HSLSs goes to the opposite; Finally, more benchmark instances are also used to verify the effectiveness of the proposed algorithms. The results of this paper have a certain guiding significance on how to choose LS and other parameters to improve HS for solving FJSP. Show more
Keywords: Algorithm analysis, local search, harmony search, flexible job-shop scheduling problem
DOI: 10.3233/JIFS-239142
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-14, 2024
Authors: Yue, Lizhu | Lv, Yue
Article Type: Research Article
Abstract: The Vlsekriterijumska Optimizacija I Komprosmisno Resenie (VIKOR) method to some extent modifies the utility function to a value function that can consider different risk preferences. However, the weight and risk attitude parameters involved in the model are difficult to determine, which limits its application. To overcome this problem, a Poset-VIKOR model is proposed. A partial order set is a non-parametric decision-making method. Through the combination of partial order set and VIKOR model, the parameters can be “eliminated”, and a robust method that can run the model is obtained. This method uses the Hasse diagram to express the evaluation results, which …can not only directly display the hierarchical and clustering information, but also show the robustness characteristics of the alternative comparison. Show more
Keywords: VIKOR method, poset, weight, multiple attribute decision making
DOI: 10.3233/JIFS-230680
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-17, 2024
Authors: He, Xiaorong | Fang, Anran | Yu, Dejian
Article Type: Research Article
Abstract: Electronic commerce (EC) has become the most critical business activity in the world. China has become the world’s largest market for EC. Over the past three decades, numerous researches have examined the current status of the development of monolingual EC research in specific scenarios. However, the paradigm shift in EC development through the analysis of the dynamic evolution of semantic information has not yet been examined, and the distinctions and connections between multilingual EC studies have not yet been established. This study analyzed 16,207 English and 17,850 Chinese EC-related articles from the Web of Science database and CNKI by combining …the BERTopic topic model and SBERT sentence embedding-based similarity computations. The results reveal the distributions of global and local topics in the English and Chinese EC literature, analyze the semantic intricacies of topic convergence and evolution across continuous time, as well as the distinctions and connections between English and Chinese topics. Finally, the evolutionary patterns and life cycle of three crucial English and Chinese topics are explored respectively, including their emergence, development, maturity, and decline. Overall, this study provides a comprehensive overview of EC studies from a topic perspective. Show more
Keywords: Electronic commerce, BERTopic, topic modeling, topic evolution, sentence embedding
DOI: 10.3233/JIFS-232825
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-22, 2024
Article Type: Research Article
Abstract: Background: Breast cancer diagnosis relies on accurate lesion segmentation in medical images. Automated computer-aided diagnosis reduces clinician workload and improves efficiency, but existing image segmentation methods face challenges in model performance and generalization. Objective: This study aims to develop a generative framework using a denoising diffusion model for efficient and accurate breast cancer lesion segmentation in medical images. Methods: We design a novel generative framework, PalScDiff, that leverages a denoising diffusion probabilistic model to reconstruct the label distribution for medical images, thereby enabling the sampling of diverse, plausible segmentation outcomes. Specifically, with the …condition of the corresponding image, PalScDiff learns to estimate the masses region probability through denoising step by step. Furthermore, we design a Progressive Augmentation Learning strategy to incrementally handle segmentation challenges of irregular and blurred tumors. Moreover, multi-round sampling is employed to achieve robust breast mass segmentation. Results: Our experimental results show that PalScDiff outperforms established models such as U-Net and transformer-based alternatives, achieving an accuracy of 95.15%, precision of 79.74%, Dice coefficient of 77.61%, and Intersection over Union (IOU) of 81.51% . Conclusion: The proposed model demonstrates promising capabilities for accurate and efficient computer-aided segmentation of breast cancer. Show more
Keywords: Diffusion model, consistent regularization, breast cancer, medical image segmentation, data augmentation
DOI: 10.3233/JIFS-239703
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-15, 2024
Authors: Ou, Qiqi | Zhang, Xiaohong | Wang, Jingqian
Article Type: Research Article
Abstract: Fuzzy rough sets (FRSs) play a significant role in the field of data analysis, and one of the common methods for constructing FRSs is the use of the fuzzy logic operators. To further extend FRSs theory to more diverse information backgrounds, this article proposes a covering variable precision fuzzy rough set model based on overlap functions and fuzzy β-neighbourhood operators (OCVPFRS). Some necessary properties of OCVPFRS have also been studied in this work. Furthermore, multi-label classification is a prevalent task in the realm of machine learning. Each object (sample or instance) in multi-label data is associated with various labels (classes), …and there are numerous features or attributes that need to be taken into account within the attribute space. To enhance various performance metrics in the multi-label classification task, attribute reduction is an essential pre-processing step. Therefore, according to overlap functions and fuzzy rough sets’ excellent work on applications: such as image processing and multi-criteria decision-making, we establish an attribute reduction method suitable for multi-label data based on OCVPFRS. Through a series of experiments and comparative analysis with existing multi-label attribute reduction methods, the effectiveness and superiority of the proposed method have been verified. Show more
Keywords: Fuzzy rough sets, overlap functions, fuzzy β-neighbourhood operators, attribute reduction, multi-label classification
DOI: 10.3233/JIFS-238245
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-19, 2024
Authors: Embriz-Islas, Cesar | Benavides-Alvarez, Cesar | Avilés-Cruz, Carlos | Zúñiga-López, Arturo | Ferreyra-Ramírez, Andrés | Rodríguez-Martínez, Eduardo
Article Type: Research Article
Abstract: Speech recognition with visual context is a technique that uses digital image processing to detect lip movements within the frames of a video to predict the words uttered by a speaker. Although models with excellent results already exist, most of them are focused on very controlled environments with few speaker interactions. In this work, a new implementation of a model based on Convolutional Neural Networks (CNN) is proposed, taking into account image frames and three models of audio usage throughout spectrograms. The results obtained are very encouraging in the field of automatic speech recognition.
Keywords: CNN, artificial intelligence, deep learning, speech recognition
DOI: 10.3233/JIFS-219346
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-12, 2024
Authors: Zavala-Díaz, Jonathan | Olivares-Rojas, Juan C. | Gutiérrez-Gnecchi, José A. | Téllez-Anguiano, Adriana C. | Alcaraz-Chávez, J. Eduardo | Reyes-Archundia, Enrique
Article Type: Research Article
Abstract: Efficient medical information management is essential in today’s healthcare, significantly to automate diagnoses of chronic diseases. This study focuses on the automated identification of diabetic patients through a clinical note classification system. This innovative approach combines rules, information extraction, and machine learning algorithms to promise greater accuracy and adaptability. Initially, the four algorithms evaluated showed similar performance, with Gradient Boosting standing out with an accuracy of 0.999. They were tested on our clinical and oncology notes, where SVM excelled in correctly labeling non-oncology notes with a 0.99. Gradient Boosting had the best average with 0.966. The combination of rules, information …extraction, and Random Forest provided the best average performance, significantly improving the classification of clinical notes and reducing the margin of error in identifying diabetic patients. The principal contribution of this research lies in the pioneering integration of rule-based methods, information extraction techniques, and machine learning algorithms for enhanced accuracy in diabetic patient identification. For future work, we consider implementing these algorithms in natural clinical settings to evaluate their practical performance. Additionally, additional approaches will be explored to improve the accuracy and applicability of clinical note-grading systems in healthcare. Show more
Keywords: NLP, diabetes, machine learning, binary classification, word frequency analysis
DOI: 10.3233/JIFS-219375
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-11, 2024
Authors: Martinez, German | Duta, Eduard-Andrei | Sanchez-Romero, Jose-Luis | Jimeno-Morenilla, Antonio | Mora-Mora, Higinio
Article Type: Research Article
Abstract: Within various industrial settings, such as shipping, aeronautics, woodworking, and footwear, there exists a significant challenge: optimizing the extraction of sections from material sheets, a process known as “nesting”, to minimize wasted surface area. This paper investigates efficient solutions to complex nesting problems, emphasizing rapid computation over ultimate precision. We introduce a dual-approach methodology that couples both a greedy technique and a genetic algorithm. The genetic algorithm is instrumental in determining the optimal sequence for placing sections, ensuring each is located in its current best position. A specialized representation system is devised for both the sections and the material sheet, …promoting streamlined computation and tangible results. By balancing speed and accuracy, this study offers robust solutions for real-world nesting challenges within a reduced computational timeframe. Show more
Keywords: Genetic algorithm, 2D nesting, irregular pattern, cutting, industrial automation
DOI: 10.3233/JIFS-219345
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-15, 2024
Authors: Ling, Lina | Wen, Mi | Wang, Haizhou | Zhu, Zhou | Meng, Xiangjie
Article Type: Research Article
Abstract: The detection of out-of-distribution (OoD) samples in semantic segmentation is crucial for autonomous driving, as deep learning models are typically trained under the assumption of a closed environment, whereas the real world presents an open and diverse set of scenarios. Existing methods employ uncertainty estimation, image reconstruction, and other techniques for OoD sample detection. We have observed that different classes may exhibit connections and associations in varying contexts. For example, objects encountered by autonomous vehicles differ in rural road scenes compared to urban environments, and the likelihood of encountering novel objects varies. This aspect is missing in current anomaly detection …methods and is vital for OoD sample detection. Existing approaches solely consider the relative significance of each prediction class, overlooking the inter-object correlation. Although prediction scores (e.g., max logits) obtained from the segmentation network are applicable for OoD sample detection, the same problem persists, particularly for OoD objects. To address this issue, we propose the utilization of the Mahalanobis distance of max logits to evaluate the final predicted score. By calculating the Mahalanobis distance, the paper aims to uncover correlations between different classes, thus enhancing the effectiveness of OoD detection. To this end, we also extend the state-of-the-art segmentation model, DeepLabV3+, to enable OoD sample detection in this paper. Specifically, this paper proposes a novel backbone network, SOD-ResNet101, for extracting contextual and multi-scale semantic information, leveraging the class correlation feature of the Mahalanobis distance to enhance the detection performance of out-of-distribution objects. Notably, our approach eliminates the need for external datasets or separate network training, making it highly applicable to existing pretraining segmentation models. Show more
Keywords: Semantic segmentation, deep learning, anomaly segmentation, automatic driving, out-of-distribution detection
DOI: 10.3233/JIFS-237799
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-13, 2024
Authors: Kumar Sahu, Vinay | Pandey, Dhirendra | Singh, Priyanka | Haque Ansari, Md Shamsul | Khan, Asif | Varish, Naushad | Khan, Mohd Waris
Article Type: Research Article
Abstract: The Internet of Things (IoT) strategy enables physical objects to easily produce, receive, and exchange data. IoT devices are getting more common in our daily lives, with diverse applications ranging from consumer sector to industrial and commercial systems. The rapid expansion and widespread use of IoT devices highlight the critical significance of solid and effective cybersecurity standards across the device development life cycle. Therefore, if vulnerability is exploited directly affects the IoT device and the applications. In this paper we investigated and assessed the various real-world critical IoT attacks/vulnerabilities that have affected IoT deployed in the commercial, industrial and consumer …sectors since 2010. Subsequently, we evoke the vulnerabilities or type of attack, exploitation techniques, compromised security factors, intensity of vulnerability and impacts of the expounded real-world attacks/vulnerabilities. We first categorise how each attack affects information security parameters, and then we provide a taxonomy based on the security factors that are affected. Next, we perform a risk assessment of the security parameters that are encountered, using two well-known multi-criteria decision-making (MCDM) techniques namely Fuzzy-Analytic Hierarchy Process (F-AHP) and Fuzzy-Analytic Network Process (F-ANP) to determine the severity of severely impacted information security measures. Show more
Keywords: IoT attacks, fuzzy-ANP, fuzzy-AHP, MCDM, IoT vulnerabilities
DOI: 10.3233/JIFS-233759
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-13, 2024
Authors: Bochkarev, Vladimir V. | Savinkov, Andrey V. | Shevlyakova, Anna V. | Solovyev, Valery D.
Article Type: Research Article
Abstract: This work considers implementation of a diachronic predictor of valence, arousal and dominance ratings of English words. The estimation of affective ratings is based on data on word co-occurrence statistics in the large diachronic Google Books Ngram corpus. Affective ratings from the NRC VAD dictionary are used as target values for training. When tested on synchronic data, the obtained Pearson‘s correlation coefficients between human affective ratings and their machine ratings are 0.843, 0.779 and 0.792 for valence, aroused and dominance, respectively. We also provide a detailed analysis of the accuracy of the predictor on diachronic data. The main result of …the work is creation of a diachronic affective dictionary of English words. Several examples are considered that illustrate jumps in the time series of affective ratings when a word gains a new meaning. This indicates that changes in affective ratings can serve as markers of lexical-semantic changes. Show more
Keywords: Affective words, affective norms, sentiment dictionary, word valence ratings, lexical semantic change
DOI: 10.3233/JIFS-219358
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-13, 2024
Authors: Zhang, Yingmin | Yi, Afa | Li, Shuo
Article Type: Research Article
Abstract: The constant development and application of new technologies, such as big data, artificial intelligence and the mobile Internet, have profoundly changed the personal and professional spheres. Despite these advances, finance professionals are still faced with a multitude of routine, repetitive and error-prone tasks. At the same time, they are challenged by the shift to management accounting, resulting in reduced productivity. This paper addresses these issues by introducing a financial statement filing robot developed using Robotic Process Automation (RPA) technology. The application of this robot has been shown to provide superior efficiency and accuracy, reduce the heavy burden of routine tasks, …and facilitate a smooth transition to management accounting practices. In addition, this research provides a valuable reference for the application and diffusion of RPA technology in the financial sector. Given the large amount of text data generated by financial processes, this paper proposes an automatic text categorization model. The effectiveness of the model is demonstrated as a response to address the challenges encountered in the consultation and archiving process. This contribution informs the development of text categorization robots tailored to the needs of finance professionals. Show more
Keywords: RPA technology, robot, financial statements, text classification, naive Bayes classifier model
DOI: 10.3233/JIFS-236716
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-10, 2024
Authors: Jun, Dai | Huijie, Shi | Yanqin, Li | Junwei, Zhao | Naohiko, Hanajima
Article Type: Research Article
Abstract: Cylinder liner is an internal part of the automobile engine, which plays an important role in the automobile internal combustion engine. Therefore, it is a top priority to accurately and quickly detect the cylinder liner surface defects. In order to effectively achieve the classification and localization of surface defects on the cylinder liner, this paper establishes a dataset for surface defects on cylinder liner and proposes a based on improved YOLOv5 algorithm for detecting surface defects on cylinder liner. Firstly, a machine vision system is established to acquire on-site images and perform manual annotation to build the dataset of surface …defects on cylinder liner. Secondly, the GSConv SlimNeck mechanism is introduced to reduce the model complexity; the Bi-directional Feature Pyramid Network (BiFPN) is used to fuse the feature information at different scales to enhance the detection accuracy of small surface defects on cylinder liner; and embedding the SimAM attention mechanism to focus on the object region of interest and improve the accuracy and robustness of the model. The final improved YOLOv5 model reduces the number of model parameters by 15.8% compared to the non-improved YOLOv5. And the experimental results on our self-built dataset for cylinder liner defects show that the mAP0.5 is improved by 0.4%. This means that the accuracy of model detection was not compromised. This method can be applied to actual production processes. Show more
Keywords: Cylinder liner defect detection, YOLOv5, GSConv SlimNeck, BiFPN, SimAM
DOI: 10.3233/JIFS-237793
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-14, 2024
Authors: Chen, Xinying | Hu, Mingjie
Article Type: Research Article
Abstract: With the rapid proliferation of substantial textual data from sources such as social media, online comments, and news articles, sentiment analysis has become increasingly crucial. However, existing deep learning methods have overlooked the significance of part-of-speech (POS) and emotional words in understanding the emotion of text. Based on this, this paper proposes a sentiment analysis approach that combines multiple features with a dual-channel network. Firstly, the vector representation of the text is obtained through Robustly Optimized BERT Pretraining Approach (RoBERTa). Secondly, the POS features and word emotional features are separately updated using self-attention to calculate weights. Concatenating words, POS and …emotion, feature dimension reduction and fusion are achieved through a linear layer. Finally, the fused feature vector is input into a dual-channel network composed of Bidirectional Gated Recurrent Unit (BiGRU) and Deep Pyramid Convolutional Neural Network (DPCNN). Experimental results demonstrate that the proposed method achieves higher classification accuracy than the comparative methods on three sentiment analysis datasets. Moreover, the experimental results fully validate the effectiveness of the proposed approach. Show more
Keywords: Sentiment analysis, part-of-speech, RoBERTa, bidirectional gated recurrent unit, deep pyramid convolutional neural network
DOI: 10.3233/JIFS-237749
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-12, 2024
Authors: Gowri, S. | Vennila, B. | Antony Crispin Sweety, C.
Article Type: Research Article
Abstract: The primary focus of this work is to develop the concept of bipolar N-neutrosophic supra topological spaces. Also, extended some concepts such as closure and interior operators of N-neutrosophic supra topological spaces to Bipolar N-neutrosophic supra topological spaces. The properties and relationship between weak forms of bipolar N-neutrosophic supra topological open sets are also established. Further, suggested several separations amongst bipolar N-neutrosophic supra sets. Some distance between bipolar N-neutrosophic sets is introduced and an efficient approachfor group multi-criteria decision making based on bipolar N-neutrosophic sets is proposed.
Keywords: Bipolar N-neutrosophic supra topology, bipolar N-neutrosophic supra α-open set, bipolar N-neutrosophic supra semi-open, bipolar N-neutrosophic supra β-open and bipolar N-neutrosophic supra pre-open, N-valued interval neutrosophic sets
DOI: 10.3233/JIFS-224450
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-13, 2024
Authors: Vallejos, Sebastian | Armentano, Marcelo G. | Berdun, Luis | Schiaffino, Silvia | González Císaro, Sandra | Nigro, Oscar | Balduzzi, Leonardo | Cuesta, Ignacio
Article Type: Research Article
Abstract: Product classification is a critical task for the smooth running of the purchase process in e-commerce websites. When it comes to P2P marketplaces, users can act both as sellers and as buyers, and they need to assign predefined categories to the products they want to sell. Besides being tedious for users, this task can result in ambiguous or inaccurate assignments. This article presents a method for the automatic categorization of items offered in a local P2P marketplace using a multi-level classification approach. Our experiments demonstrated a significant improvement in the classification results of the proposed solution compared to a traditional …direct classification approach. Show more
Keywords: Classification, e-commerce, NLP, P2P marketplace
DOI: 10.3233/JIFS-219344
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-11, 2024
Authors: Brännström, Andreas | Nieves, Juan Carlos
Article Type: Research Article
Abstract: This paper introduces an automated decision-making framework for providing controlled agent behavior in systems dealing with human behavior-change. Controlled behavior in such settings is important in order to reduce unexpected side-effects of a system’s actions. The general structure of the framework is based on a psychological theory, the Theory of Planned Behavior (TPB), capturing causes to human motivational states, which enables reasoning about dynamics of human motivation. The framework consists of two main components: 1) an ontological knowledge-base that models an individual’s behavioral challenges to infer motivation states and 2) a transition system that, in a given motivation state, decides …on motivational support, resulting in transitions between motivational states. The system generates plans (sequences of actions) for an agent to facilitate behavior change. A particular use-case is modeled regarding children with Autism Spectrum Conditions (ASC) who commonly experience difficulties in everyday social situations. An evaluation of a proof-of-concept prototype is performed that presents consistencies between ASC experts’ suggestions and plans generated by the system. Show more
Keywords: Interactive agents, strategic decision-making, behavior-change systems, theory of planned behavior, Autism
DOI: 10.3233/JIFS-219335
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-11, 2024
Authors: López-López, Aurelio | Garcıa-Gorrostieta, Jesús Miguel | González-López, Samuel
Article Type: Research Article
Abstract: Emotion detection in educational dialogues, particularly within student-teacher interactions, has become a crucial research area for improving the learning experience. In this paper, we employ two models, one generic Bidirectional Encoder Representations from Transformers (BERT) and the Emotion detection model Robustly Optimized BERT Approach (EmoRoBERTa), to automatically classify emotions in a corpus of student-teacher chat interactions. Then subsequently, we validate these classifications using a scheme based on oracles, employing two generative large language models (ChatGPT and Bard). Experiments on emotion detection in dialogues between students and teachers revealed that EmoRoBERTa exhibited a reasonable level of agreement with the oracles, while …ChatGPT demonstrated the highest consistency with EmoRoBERTa’s predictions. Furthermore, we identified the impact of specific words on emotion classification, offering insights into the decision-making process of these models. The results not only highlight the prominent presence of emotions like approval, gratitude, curiosity, disapproval, amusement, confusion, remorse, joy , and surprise but also provide substantial support for the utilization of the proposed emotion detection model to enhance the student learning environment. Exploring the emotional aspects of educational dialogues holds the potential to enhance instruction methods, provide timely assistance to students in need, and create an improved learning atmosphere. Show more
Keywords: Emotion detection, learning interaction, transfer learning, large language models, active learning
DOI: 10.3233/JIFS-219340
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-11, 2024
Authors: Shi, Xiaolong | Kosari, Saeed | Rangasamy, Parvathi | Nivedhaa, R.K. | Rashmanlou, Hossein
Article Type: Research Article
Abstract: Modern image processing techniques are improving beyond old methods, which include advanced approaches, for example deep learning. Convolutional Neural Networks (CNNs) are excellent at automatic feature extraction, whereas Generative Adversarial Networks (GANs) produce realistic images. Transfer learning uses pre-trained models, whereas semantic segmentation identifies pixels in images. Super-resolution, style transfer, and attention mechanisms can increase the quality of images and understanding. Adversarial defenses address purposeful manipulations, while 3D image processing handles three-dimensional data. These advancements make use of improved computational power and massive datasets to revolutionize image processing capabilities. Traditional image processing algorithms frequently fail to handle the complex and …multidimensional structure of color images, particularly when dealing with uncertainty and imprecision. In this study, the 3D-EIFIM frame work is extented and scaled aggregation operations 3D-EIFIM tailored for image data are proposed. By representing each pixel as an entry of 3D-EIFIM and applying aggregation techniques to enable more effective image analysis, manipulation, and enhancement. The practical implications of this research are significant, as it can lead to advancements in fields such as computer vision, medical imaging, and remote sensing. Show more
Keywords: IFP, conjunction, disjunction, IFIM, EIFIM, 3D-IFIM, 3D-EIFIM
DOI: 10.3233/JIFS-238252
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-17, 2024
Authors: Ruby Elizabeth, J. | Kesavaraja, D. | Ebenezer Juliet, S.
Article Type: Research Article
Abstract: The retinal illness that causes vision loss frequently on the globe is glaucoma. Hence, the earlier detection of Glaucoma is important. In this article, modified AlexNet deep leaning model is proposed to category the source retinal images into either healthy or Glaucoma through the detection and segmentations of optic disc (OD) and optic cup (OC) regions in retinal pictures. The retinal images are preprocessed and OD region is detected and segmented using circulatory filter. Further, OC regions are detected and segmented using K-means classification algorithm. Then, the segmented OD and OC region are classified and trained by the suggested AlexNet …deep leaning model. This model classifies the source retinal image into either healthy or Glaucoma. Finally, performance measures have been estimated in relation to ground truth pictures in regards to accuracy, specificity and sensitivity. These performance measures are contrasted with the other previous Glaucoma detection techniques on publicly accessible retinal image datasets HRF and RIGA. The suggested technique as described in this work achieves 91.6% GDR for mild case and also achieves 100% GDR for severe case on HRF dataset. The suggested method as described in this work achieves 97.7% GDR for mild case and also achieves 100% GDR for severe case on RIGA dataset. AIM: Segmenting the OD and OC areas and classifying the source retinal picture as either healthy or glaucoma-affected. METHODS: The retinal images are preprocessed and OD region is detected and segmented using circulatory filter. Further, OC region is detected and segmented using K-means classification algorithm. Then, the segmented OD and OC region classified are and trained by the suggested AlexNet deep leaning model. RESULTS: The suggested method as described in this work achieves 91.6% GDR for mild case and also achieves 100% GDR for severe case on HRF dataset. The suggested method as described in this work achieves 97.7% GDR for mild case and also achieves 100% GDR for severe case on RIGA dataset. CONCLUSION: This article proposes the modified AlexNet deep learning models for the detections of Glaucoma utilizing retinal images. The OD region is detected using circulatory filter and OC region is detected using k-means classification algorithm. The detected OD and OC regions are utilized to classify the retinal images into either healthy or Glaucoma using the suggested AlexNet model. The proposed method obtains 100% Sey, 93.7% Spy and 96.6% CA on HRF dataset retinal images. The proposed AlexNet method obtains 97.7% Sey, 98% Spy and 97.8% CA on RIGA dataset retinal images. The proposed method stated in this article achieves 91.6% GDR for mild case and also achieves 100% GDR for severe case on HRF dataset. The suggested method as described in this work achieves 97.7% GDR for mild case and also achieves 100% GDR for severe case on RIGA dataset. Show more
Keywords: Retina, deep learning, OD, OC, AlexNet
DOI: 10.3233/JIFS-234131
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-12, 2024
Authors: Wang, Lu
Article Type: Research Article
Abstract: In this technology world, education is also becoming one of the basic necessities of human life like food, shelter, and clothes. Even in day-to-day daily activities, the world is moving toward an automated process using technology developments. Some of the technology developments in day-to-day life activities are smartphone, internet activities, and home and office appliances. To cope with these advanced technologies, the persons must have basic educational qualification to understand and operate those appliances easily. Apart from this, the education helps the person to develop their personal growth in both knowledge and wealth. With the development of technologies, different Artificial …Intelligence techniques have been applied on the datasets to analyze these factors and enhance the teaching method. But the current techniques were applied to one or two data models that analyze either their educational performance or demographic variable. But these models were not sufficient for analyzing all the factors that affects the education. To overcome this, a single optimized machine-learning approach is proposed in this paper to analyze the factors that affect the education. This analysis helps the faculty to enhance their teaching methodology and understand the student’s mentality toward education. The proposed Hybrid Cuckoo search-particle swarm optimization was implemented on three datasets to determine the factors that affect the education. These optimal factors are determined by identifying their relations to the final results of an individual person. All these optimal factors are combined and grades are grouped to analyze the proposed optimization process performance using regression neural network. The proposed optimization-based neural network was tested on three data models and its performance analysis showed that the proposed model can achieve higher accuracy of 99% that affects the individual education. This shows that the proposed model can help the faculty to enhance their attention to the students individually. Show more
Keywords: Education, demographic factors, optimization, hybrid, cuckoo search optimization, particle swarm, regression neural network
DOI: 10.3233/JIFS-234021
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-13, 2024
Authors: Ramasamy, Uma | Santhoshkumar, Sundar
Article Type: Research Article
Abstract: In the expansive domain of data-driven research, the curse of dimensionality poses challenges such as increased computational complexity, noise sensitivity, and the risk of overfitting models. Dimensionality reduction is vital to handle high-dimensional datasets effectively. The pilot study disease dataset (PSD) with 53 features contains patients with Rheumatoid Arthritis (RA) and Osteoarthritis (OA). Our work aims to reduce the dimension of the features in the PSD dataset, identify a suitable feature selection technique for the reduced-dimensional dataset, analyze an appropriate Machine Learning (ML) model, select significant features to predict the RA and OA disease and reveal significant features that predict …the arthritis disease. The proposed study, Progressive Feature Reduction with Varied Missing Data (PFRVMD), was employed to reduce the dimension of features by using PCA loading scores in the random value imputed PSD dataset. Subsequently, notable feature selection methods, such as backward feature selection, the Boruta algorithm, the extra tree classifier, and forward feature selection, were implemented on the reduced-dimensional feature set. The significant features/biomarkers are obtained from the best feature selection technique. ML models such as the K-Nearest Neighbour Classifier (KNNC), Linear Discriminant Analysis (LDA), Logistic Regression (LR), Naïve Bayes Classifier (NBC), Random Forest Classifier (RFC) and Support Vector Classifier (SVC) are used to determine the best feature selection method. The results indicated that the Extra Tree Classifier (ETC) is the promising feature selection method for the PSD dataset because the significant features obtained from ETC depicted the highest accuracy on SVC. Show more
Keywords: Autoimmune disease, rheumatoid arthritis, osteoarthritis, feature reduction, feature selection, machine learning algorithms
DOI: 10.3233/JIFS-231537
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-15, 2024
Authors: Sun, Yilin | Li, Shufan
Article Type: Research Article
Abstract: Contemporary art design not only pursues the quality of the work itself, but also pays attention to the sensory aspects of people’s needs for art design. Traditional art design methods can be limited by time, space and other objective conditions, and often fail to achieve the designer’s expected effect, and visitors’ experience is not strong. The usage of multimedia technology in art and design can enrich its expression and enhance visitors’ experience. In order to increase the sense of interaction between the platform and users, multimedia technology is incorporated into the interactive art design platform generated by VR technology in …this paper. This article combines multimedia technology with interactive technology to construct an interactive platform for art and design, and applies it to the display of Dunhuang murals. Through the analysis of user experience feedback, the effectiveness of art and design display and interaction is verified. Display and interact with Dunhuang murals as interactive platform applications. This test is to extract women’s clothing colors from the same tradition in different times in the color extraction exploration module of the interactive platform, so as to provide accurate information for displaying women’s clothing color changes and comparing interactions. The findings show that the platform is capable of extracting and recognizing the color characteristics of the murals, accurately identifying user signals, and noticing 3D modeling of images via VR technology. This capability provides solid technical and data support for the platform’s interaction module. The interaction design, platform functionality, and layout can support the majority of users in terms of cognition, perception, and interaction, pique their interest, and enhance their experience, according to evaluation of trial user information. The interaction ends abruptly, according to a small percentage of users, and they had a bad experience overall. Show more
Keywords: Multimedia technology, art and design, interactive, platform building
DOI: 10.3233/JIFS-238001
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-14, 2024
Authors: Sheik Faritha Begum, S. | Suresh Anand, M. | Pramila, P.V. | Indra, J. | Samson Isaac, J. | Alagappan, Chockalingam | Gopala Gupta, Amara S.A.L.G. | Srivastava, Suraj | Vidhya, R.G.
Article Type: Research Article
Abstract: Thyroid tumours are a common form of cancer, and accurate classification of their type is crucial for effective treatment planning. This research presents a hybrid approach for the classification of thyroid tumours based on their type. The proposed approach combines the use of advanced machine learning techniques with a comprehensive database of thyroid tumour samples. The database includes various features such as tumour size, shape, and texture, as well as patient-specific information. The hybrid approach aims to optimize the classification process by leveraging the diverse set of features and utilizing the power of machine learning algorithms. By harnessing the power …of machine learning algorithms, this approach has the potential to revolutionize the field of thyroid tumour classification and significantly improve patient outcomes. The optimization strategy is Particle Swarm Optimization, refining the classification performance and ensuring optimal accuracy in identifying and categorizing four types of thyroid tumours. The utilization of advanced diagnostic tools and state-of-the-art Random forest classifier techniques in this approach marks a significant advancement in the field of thyroid tumour classification. Through the augmentation of the dataset and the pre-processing techniques employed, the hybrid classification system demonstrates enhanced accuracy and reliability in distinguishing between different types of thyroid tumours. This innovative approach not only provides a more comprehensive understanding of thyroid tumours but also paves the way for personalized and effective treatment strategies, ultimately improving patient care and outcomes. Show more
Keywords: Machine learning, thyroid tumours, Particle Swarm Optimization, Random Forest classifier, innovative approach
DOI: 10.3233/JIFS-239804
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-12, 2024
Authors: Zhang, Jianwei | Chen, Lei | Hou, Ge | Huang, Jinlin | Wang, Yong
Article Type: Research Article
Abstract: Health assessment is one of the important theoretical bases for deciding whether the diversion tunnel can operate safely and stably. A project of the TBM diversion tunnel is taken as the research object to ensure the normal operation of the diversion tunnel. Based on measured data and considering multiple safety aspects such as structural response, durability, and external factors of the diversion tunnel, a TBM diversion tunnel structural health evaluation index system is established. A new method for the TBM diversion tunnel structural health comprehensive evaluation based on Analytic Hierarchy Process-Matter Element Extension-Variable Weight Theory (AMV) is proposed to explore …the impact of AMV fluctuation with the measured results of the indicators on the weight, closeness, and health grade of each evaluation index. The high sensitivity and high-risk evaluation indicators for the structural health of the diversion tunnels are identified. It is found that the variable weight varies with the changes in various indicator values, which can accurately evaluate the health status of tunnels in real-time. The characteristic values of the tunnel grade calculated by the AHP and the AMV are 1.589 and 1.695, respectively. The results of the corresponding interval diversion tunnel are the basic safety state of grade B. Except for the two evaluation indicators of concrete strength and slurry properties, the variable weight values and grade characteristic values of other evaluation indicators increase with the increase of indicator values. The four indicators of segment settlement, segment opening, segment misalignment, and segment cracks are more sensitive to the health of the TBM diversion tunnel. This AMV can accurately evaluate the health status of the diversion tunnel structure. The research results can provide references for later maintenance work and similar projects. Show more
Keywords: Diversion tunnel, Health evaluation, AMV, AHP, susceptibility
DOI: 10.3233/JIFS-239155
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-14, 2024
Authors: Li, Yuerong | Zhang, Yuhua | Che, Jinxing
Article Type: Research Article
Abstract: Accurate prediction of short-term electricity price is the key to obtain economic benefit and also an important index of power system planning and management. Support vector regression (SVR) based ensemble works have gained remarkable achievements in terms of high accuracy and steady performance, but they are highly dependent on data representativeness and have a high computational complexity O (k * N 3 ) of data samples and parameter selection. To further improve the data representativeness and reduce its computational complexity, this paper develops a new approach to forecast electricity price via optimal weighted ensemble. In the model, the cluster-based subsampling …algorithm is proposed to categorize the inputs being seasonally decomposed into several groups, and representative data are drawn from each group in a certain proportion to ensure that each subset trained with SVR has the same representativeness and features. Moreover, the optimal weighted combination method is presented to assign weights to the sub-SVRs to obtain the optimal support vector regression ensemble model (OWSSVRE). The experimental results show that the improved support vector regression ensemble model with the same features and representativeness of the subset has better performance in electricity price forecasting. As a result, it is suitable to support decision making in the energy and other sectors. Show more
Keywords: Electricity price forecasting, support vector regression, K-means clustering, optimal weight, subsampling
DOI: 10.3233/JIFS-236239
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-16, 2024
Authors: Thenmozhi, R. | Sakthivel, P. | Kulothungan, K.
Article Type: Research Article
Abstract: The Internet of Things and Quantum Computing raise concerns, as Quantum IoT defines security that exploits quantum security management in IoT. The security of IoT is a significant concern for ensuring secure communications that must be appropriately protected to address key distribution challenges and ensure high security during data transmission. Therefore, in the critical context of IoT environments, secure data aggregation can provide access privileges for accessing network services. "Most data aggregation schemes achieve high computational efficiency; however, the cryptography mechanism faces challenges in finding a solution for the expected security desecration, especially with the advent of quantum computers utilizing …public-key cryptosystems despite these limitations. In this paper, the Secure Data Aggregation using Quantum Key Management scheme, named SDA-QKM, employs public-key encryption to enhance the security level of data aggregation. The proposed system introduces traceability and stability checks for the keys to detect adversaries during the data aggregation process, providing efficient security and reducing authentication costs. Here the performance has been evaluated by comparing it with existing competing schemes in terms of data aggregation. The results demonstrate that SDA-QKM offers a robust security analysis against various threats, protecting privacy, authentication, and computation efficiency at a lower computational cost and communication overhead than existing systems. Show more
Keywords: Internet of things, security, data aggregation, access control, quantum cryptography
DOI: 10.3233/JIFS-223619
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-16, 2024
Authors: Li, Chen | Liu, Na | Xu, Zhenshun | Zheng, Guofeng | Yang, Jie | Dao, Lu
Article Type: Research Article
Abstract: Medical short text classification is of great significance to medical information extraction and medical auxiliary diagnosis. However, medical short texts face challenges such as sparse features, semantic ambiguity, and the specialized nature of the medical field, resulting in relatively low accuracy in short text classification. Taking into consideration the characteristics of medical short texts, this paper proposes a Chinese medical short text classification model based on DPECNN. First, ERNIE is utilized to learn text knowledge and information in order to enhance the model’s semantic representation capabilities. Then, the DPECNN model is employed to extract rich feature information, and the classification …results are generated through a fully connected layer. In the case of DPCNN, it only considers deep-level contextual semantic information, overlooking the correlation of adjacent semantic information between channels. To address this, ECA channel attention is introduced to account for adjacent semantic information. The use of a self-normalizing activation function helps avoid the problem of vanishing gradients. To enhance the model’s robustness and generalization ability, the FGM adversarial training algorithm is employed to perturb the data. The F1 values achieved on the THUCNews, KUAKE-QIC, and CHIP-CTC datasets are 95.00%, 79.45%, and 82.81%, respectively. Show more
Keywords: Medical text mining, Chinese short text classification, ERNIE, DPECNN, confrontation training
DOI: 10.3233/JIFS-239006
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-13, 2024
Authors: Du, Rong | Cheng, Yan
Article Type: Research Article
Abstract: This research paper highlights the significance of vehicle detection in aerial images for surveillance systems, focusing on deep learning methods that outperform traditional approaches. However, the challenge of high computation complexity due to diverse vehicle appearances persists. The motivation behind this study is to highlight the crucial role of vehicle detection in aerial images for surveillance systems, emphasizing the superior performance of deep learning methods compared to traditional approaches. To address this, a lightweight deep neural network-based model is developed, striking a balance between accuracy and efficiency enabling real-time operation. The model is trained and evaluated on a standardized dataset, …with extensive experiments demonstrating its ability to achieve accurate vehicle detection with significantly reduced computation costs, offering a practical solution for real-world aerial surveillance scenarios. Show more
Keywords: Aerial images, vehicle detection, surveillance system, deep learning, real-time processing
DOI: 10.3233/JIFS-236059
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-13, 2024
Authors: Pavithra, R. | Ramachandran, Prakash
Article Type: Research Article
Abstract: The Hilbert spectrum images of intrinsic mode functions (IMF) of empirical mode decomposition (EMD) analysis and variational mode decomposition (VMD) analysis of faulty machine vibration signals are used in deep convolutional neural network (DCNN) for machine fault classification in which the DCNN automatically learns the features from spectral images using convolution layer. Though both EMD and VMD analysis suit well for non-stationary signal analysis, VMD has the merit of aliasing free IMFs. In this paper, the performance improvement of DCNN classification for a non-stationary vibration signal dataset using VMD is brought out. The numerical experiment uses the Hilbert spectrum images …of 4 EMD-IMFs and 4 VMD-IMFs in DCNN to classify 10 different faults of the Case Western Reserve University (CWRU) bearing dataset. The confusion matrices are obtained and the plot of model accuracies in terms of epochs for the DCNN is analysed. It is shown that the spectrum images of one of the four EMD-IMFs, IMF0 , give a validation accuracy of 100% and in the case of VMD the spectrum images of two of the four VMD-IMFs, IMF0 , and IMF1 give a validation accuracy of 100%. This reveals that non-aliasing IMFs of VMD are better at classifying bearing faults. Further to bring out the merits of VMD analysis for non-stationary signals the numerical experiment is conducted using VMD analysis for binary fault classification of the milling dataset which is more non-stationary than the bearing dataset which is proved by plotting the statistical parameters of both datasets against time. It is found that the DCNN classification is 100% accurate for IMF3 of VMD analysis which is much better than the 81% accuracy provided by EMD analysis as per existing literature. The performance comparison highlights the merits of VMD analysis over EMD analysis and other state-of-the-art methods and ensemble learning methods. Show more
Keywords: Deep convolution neural network, empirical mode decomposition, hilbert transform, intrinsic mode function, variational mode decomposition, ensemble learning
DOI: 10.3233/JIFS-237546
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-19, 2024
Authors: Kumar, Geethu S. | Ankayarkanni, B.
Article Type: Research Article
Abstract: Facial Emotion Recognition (FER) is a powerful tool for gaining insights into human behaviour and well-being by precisely quantifying a wide range of emotions especially stress, through the analysis of facial images. Detecting stress using FER entails meticulously examining subtle facial cues, such as changes in eye movements, brow furrowing, lip tightening, and muscle contractions. To assure effectiveness and real-time processing, FER approaches based on deep learning and artificial intelligence (AI) techniques was created using edge modules. This research introduces a novel approach for identifying stress, leveraging the Conv-XGBoost Algorithm to analyse facial emotions. The proposed model sustain rigorous evaluation …techniques, for employing key metrics examination such as the F1 score, validation accuracy, precision, and recall rate to assess its real-world reliability and robustness. This comprehensive analysis and validation proved the model’s practical utility in facial analysis. Integrating the Conv-XGBoost Algorithm with facial emotion analysis represents a promising and highly accurate solution for efficient stress detection. The method surpasses existing literature and demonstrate significant potential for practical applications based on well-validated data. Show more
Keywords: Stress, emotion recognition, Conv-XGBoost, deep learning, facial expression
DOI: 10.3233/JIFS-237820
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-15, 2024
Authors: Martínez Felipe, Miguel de JesÚs | Martínez Castro, JesÚs Alberto | Montiel Pérez, JesÚs Yaljá | Chaparro Amaro, Oscar Roberto
Article Type: Research Article
Abstract: In this work, the image block matching based on dissimilarity measure is investigated. Moreover, an unsupervised approach is implemented to yield that the algorithms have low complexity (in numbers of operations) compared to the full search algorithm. The state-of-the-art experiments only use discrete cosine transform as a domain transform. In addition, some images were tested to evaluate the algorithms. However, these images were not evaluated according to specific characteristics. So, in this paper, an improved version is presented to tackle the problem of dissimilarity measure in block matching with a noisy environment, using another’s domain transforms or low-pass filters to …obtain a better result in block matching implementing a quantitive measure with an average accuracy margin of ± 0.05 is obtained. The theoretical analysis indicates that the complexity of these algorithms is still accurate, so implementing Hadamard spectral coefficients and Fourier filters can easily be adjusted to obtain a better accuracy of the matched block group. Show more
Keywords: Block matching, Walsh-Hadamard discrete transform, Fourier filter, dissimilarity measure, unsupervised machine learning
DOI: 10.3233/JIFS-219341
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-11, 2024
Authors: Ensastegui-Ortega, Maria Elena | Batyrshin, Ildar | Cárdenas–Perez, Mario Fernando | Kubysheva, Nailya | Gelbukh, Alexander
Article Type: Research Article
Abstract: In today’s data-rich era, there is a growing need for developing effective similarity and dissimilarity measures to compare vast datasets. It is desirable that these measures reflect the intrinsic structure of the domain of these measures. Recently, it was shown that the space of finite probability distributions has a symmetric structure generated by involutive negation mapping probability distributions into their “opposite” probability distributions and back, such that the correlation between opposite distributions equals –1. An important property of similarity and dissimilarity functions reflecting such symmetry of probability distribution space is the co-symmetry of these functions when the similarity between probability …distributions is equal to the similarity between their opposite distributions. This article delves into the analysis of five well-known dissimilarity functions, used for creating new co-symmetric dissimilarity functions. To conduct this study, a random dataset of one thousand probability distributions is employed. From these distributions, dissimilarity matrices are generated that are used to determine correlations similarity between different dissimilarity functions. The hierarchical clustering is applied to better understand the relationships between the studied dissimilarity functions. This methodology aims to identify and assess the dissimilarity functions that best match the characteristics of the studied probability distribution space, enhancing our understanding of data relationships and patterns. The study of these new measures offers a valuable perspective for analyzing and interpreting complex data, with the potential to make a significant impact in various fields and applications. Show more
Keywords: Dissimilarity function, co-symmetry, correlation, probability distribution, negation
DOI: 10.3233/JIFS-219363
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-10, 2024
Authors: Wei, Tao | Yang, Changchun | Zheng, Yanqi | Zhang, Jingxue
Article Type: Research Article
Abstract: Recently, Graph Neural Networks (GNNs) using aggregating neighborhood collaborative information have shown effectiveness in recommendation. However, GNNs-based models suffer from over-smoothing and data sparsity problems. Due to its self-supervised nature, contrastive learning has gained considerable attention in the field of recommendation, aiming at alleviating highly sparse data. Graph contrastive learning models are widely used to learn the consistency of representations by constructing different graph augmentation views. Most current graph augmentation with random perturbation destroy the original graph structure information, which mislead embeddings learning. In this paper, an effective graph contrastive learning paradigm CollaGCL is proposed, which constructs graph augmentation by …using singular value decomposition to preserve crucial structure information. CollaGCL enables perturbed views to effectively capture global collaborative information, mitigating the negative impact of graph structural perturbations. To optimize the contrastive learning task, the extracted meta-knowledge was propagate throughout the original graph to learn reliable embedding representations. The self-information learning between views enhances the semantic information of nodes, thus alleviating the problem of over-smoothing. Experimental results on three real-world datasets demonstrate the significant improvement of CollaGCL over state-of-the-art methods. Show more
Keywords: Self-supervised learning, recommendation, contrastive learning, data augmentation
DOI: 10.3233/JIFS-236497
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-14, 2024
Authors: Yang, Dianqing | Wang, Wenliang
Article Type: Research Article
Abstract: Unmanned aerial vehicle (UAV) remote-sensing images have a wide range of applications in wildfire monitoring, providing invaluable data for early detection and effective management. This paper proposes an improved few-shot target detection algorithm tailored specifically for wildfire detection. The quality of UAV remote-sensing images is significantly improved by utilizing image enhancement techniques such as Gamma change and Wiener filter, thereby enhancing the accuracy of the detection model. Additionally, ConvNeXt-ECA is used to focus on valid information within the images, which is an improvement of ConvNeXt with the addition of the ECANet attention mechanism. Furthermore, multi-scale feature fusion is performed by …adding a feature pyramid network (FPN) to optimize the extracted small target features. The experimental results demonstrate that the improved algorithm achieves a detection accuracy of 93.2%, surpassing Faster R-CNN by 6.6%. Moreover, the improved algorithm outperforms other target detection algorithms YOLOv8, RT-DETR, YoloX, and SSD by 3.4%, 6.4%, 7.6% and 21.1% respectively. This highlights its superior recognition accuracy and robustness in wildfire detection tasks. Show more
Keywords: Fire target detection, ConvNeXt-ECA, UAV remote-sensing image, feature pyramid network
DOI: 10.3233/JIFS-240531
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-11, 2024
Authors: Singh, Pratibha | Kushwaha, Alok Kumar Singh | Varshney, Neeraj
Article Type: Research Article
Abstract: Precise video moment retrieval is crucial for enabling users to locate specific moments within a large video corpus. This paper presents Interactive Moment Localization with Multimodal Fusion (IMF-MF), a novel interactive moment localization with multimodal fusion model that leverages the power of self-attention to achieve state-of-the-art performance. IMF-MF effectively integrates query context and multimodal features, including visual and audio information, to accurately localize moments of interest. The model operates in two distinct phases: feature fusion and joint representation learning. The first phase dynamically calculates fusion weights for adapting the combination of multimodal video content, ensuring that the most relevant features …are prioritized. The second phase employs bi-directional attention to tightly couple video and query features into a unified joint representation for moment localization. This joint representation captures long-range dependencies and complex patterns, enabling the model to effectively distinguish between relevant and irrelevant video segments. The effectiveness of IMF-MF is demonstrated through comprehensive evaluations on three benchmark datasets: TVR for closed-world TV episodes and Charades for open-world user-generated videos, DiDeMo dataset, Open-world, diverse video moment retrieval dataset. The empirical results indicate that the proposed approach surpasses existing state-of-the-art methods in terms of retrieval accuracy, as evaluated by metrics like Recall (R1, R5, R10, and R100) and Intersection-of-Union (IoU). The results consistently demonstrate IMF-MF’s superior performance compared to existing state-of-the-art methods, highlighting the benefits of its innovative interactive moment localization approach and the use of self-attention for feature representation and attention modeling. Show more
Keywords: Multimedia data retrieval, query-dependent fusion, ranking system, multimodal retrieval, video segment localization
DOI: 10.3233/JIFS-233071
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-12, 2024
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]