Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Ding, Zongchao; *
Affiliations: School of Digital Arts and Design, Dalian Neusoft University of Information, Dalian, Liaoning, China
Correspondence: [*] Corresponding author. Zongchao Ding, School of Digital Arts and Design, Dalian Neusoft University of Information, Dalian 116023, Liaoning, China. Email: [email protected].
Abstract: The networks have achieved good results by using sparse connections, weight sharing, pooling, and establishing their own localized receptive fields. This work aims to improve the Space Invariant Artificial Neural Network approach and raise its recognition accuracy and convergence rate. Incorporating the continuous neural architecture into the Space Invariant Artificial Neural Network is the first step toward simultaneously learning the deep features of an image. Second, the skip convolution layer of ResNet serves as the foundation for developing a new residual module named QuickCut3-ResNet. A dual evaluation model is then developed to achieve the combined evaluation of the convolutional and complete connection process. Ultimately, the best network parameters of the Space Invariant Artificial Neural Network are determined after simulation experiments are used to examine the impact of various network parameters on the network performance. Results from experiments demonstrate that the Space Invariant Artificial Neural Network technique described in this research can learn the image’s varied characteristics, which enhances the Space Invariant Artificial Neural Network’s capacity to recognize images and extract features accurately.
Keywords: Artificial intelligence, big data, space invariant artificial neural network, image recognition, QuickCut3-ResNet
DOI: 10.3233/JIFS-239538
Journal: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-14, 2024
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]