Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Cardoso-Moreno, Marco A.a; * | Luján-García, Juan Eduardoa; b; * | Yáñez-Márquez, Cornelioa
Affiliations: [a] Centro de Investigación en Computación, Instituto Politécnico Nacional, Av. Juan de Dios Bátiz, esq. Miguel Othón de Mendizábal, Col.Nueva Industrial Vallejo, Alcaldıa Gustavo A. Madero, C.P. 07700, CDMX | [b] Biomedical Informatics Group (GIB), Escuela Técnica Superior de Ingenieros Informáticos, Universidad Politécnica de Madrid, Campus de Montegancedo S/N, Madrid, Spain
Correspondence: [*] Corresponding authors: Marco A. Cardoso-Moreno and Juan Eduardo, Luján-García. E-mails: [email protected], [email protected].
Abstract: In this study, a thorough analysis of the proposed approach in the context of emotion classification using both single-modal (A-13sbj) and multi-modal (B-12sbj) sets from the YAAD dataset was conducted. This dataset encompassed 25 subjects exposed to audiovisual stimuli designed to induce seven distinct emotional states. Electrocardiogram (ECG) and galvanic skin response (GSR) biosignals were collected and classified using two deep learning models, BEC-1D and ELINA, along with two different preprocessing techniques, a classical fourier-based filtering and an Empirical Mode Decomposition (EMD) approach. For the single-modal set, this proposal achieved an accuracy of 84.43±30.03, precision of 85.16±28.91, and F1-score of 84.06±29.97. Moreover, in the extended configuration the model maintained strong performance, yielding scores of 80.95±22.55, 82.44±24.34, and 79.91±24.55, respectively. Notably, for the multi-modal set (B-12sbj), the best results were obtained with EMD preprocessing and the ELINA model. This proposal achieved an improved accuracy, precision, and F1-score scores of 98.02±3.78, 98.31±3.31, and 97.98±3.83, respectively, demonstrating the effectiveness of this approach in discerning emotional states from biosignals.
Keywords: Emotion classification, signal preprocessing, convolutional neural network, ECG, GSR, EMD
DOI: 10.3233/JIFS-219334
Journal: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-9, 2024
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]