Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Ashwin, P.V.; * | Ansal, K.A.
Affiliations: Saintgits College of Engineering, APJ Abdul Kalam Kerala Technological University, Kerala, India
Correspondence: [*] Corresponding author. P.V. Ashwin, Research Scholar, Saintgits College of Engineering, APJ Abdul Kalam Kerala Technological University, Kerala, India. E-mail:[email protected].
Abstract: Image classification using polarimetric synthetic aperture radar (Pol-SAR) is becoming more important in image processing for remote sensing applications. However, in the existing techniques, during the feature extraction process, there exist some limitations including laborious endeavour for Pol-SAR image classification, identifying intrinsic features for target recognition is difficult in feature selection, and pixel-level Pol-SAR image classification is difficult for obtaining more precise and coherent interpretation consequences. Hence to overcome these issues, a novel Multifarious Stratification Stratagem in machine learning is proposed to achieve pixel-level Pol-SAR classification. In this proposed model, a novel Scrumptious Integrant Wrenching method is used for efficient feature extraction. It is compatible with the orientation-sensitive of the Pol-SAR image which increases the variety of intra-layer features. To remove the difficulty in feature selection, a novel Episodicical Proximity Selection method is proposed in which a Split-level parallel feature selection strategy is used to select the best qualities from the extracted features. To tackle the difficulty in classification, an Elastic Net Classifier (ENC) is used that find the coefficient vector for the linear combination of the training sets. This efficiently classified the best features in the Pol-SAR images and improved the proposed system’s accuracy. As a result, the performance measures of the proposed system demonstrate that the accuracy is increased by 99.69%, precision is increased by 98.99%, recall is increased by 98.99%, sensitivity is increased by 98.99%, and F1-score is increased by 98.99% as a response.
Keywords: Feature extraction, feature selection, elastic net classifier, principle component analysis, convolution layer, max-pooling layer
DOI: 10.3233/JIFS-222403
Journal: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-20, 2024
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]