Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Purchase individual online access for 1 year to this journal.
Price: EUR 315.00Impact Factor 2024: 1.7
The purpose of the Journal of Intelligent & Fuzzy Systems: Applications in Engineering and Technology is to foster advancements of knowledge and help disseminate results concerning recent applications and case studies in the areas of fuzzy logic, intelligent systems, and web-based applications among working professionals and professionals in education and research, covering a broad cross-section of technical disciplines.
The journal will publish original articles on current and potential applications, case studies, and education in intelligent systems, fuzzy systems, and web-based systems for engineering and other technical fields in science and technology. The journal focuses on the disciplines of computer science, electrical engineering, manufacturing engineering, industrial engineering, chemical engineering, mechanical engineering, civil engineering, engineering management, bioengineering, and biomedical engineering. The scope of the journal also includes developing technologies in mathematics, operations research, technology management, the hard and soft sciences, and technical, social and environmental issues.
Authors: Sreenivasulu, A. | Subramanian, S. | Sangameswara Raju, P.
Article Type: Research Article
Abstract: The world’s energy offer has been beneath an incredible pressure because of the speedy depletion of fossil resources, energy security, environmental issues and therefore the ever-increasing fashionable living sophistication. The problem of persistent hikes in oil costs, climate threats and soaring energy demand has pleased the worldwide interest to exploiting and investment in renewable sorts of energy (RE), alternative energy specially. A electrical phenomenon, PV system is simple to put in, has no moving components, is sort of freed from maintenance, reduced vulnerability to power loss and is expandable. Despite these benefits, PV energy prices significantly on top of fossil …fuels. This can be because of its lower effectiveness and better prices. In PV systems tracking MPPT in effective manner is still the problem. In this paper, the 1000 W grid connected PV system has been taken for analysis of various MPPT techniques. Grid connected PV system modeled, tested under totally different irradiation conditions and conjointly for partial shading conditions. additional it’s enforced under partial shading condition for early MPPT ways, improvement methodology,at finally adopted deep learning methodology for the system and therefore the obtained results were compared with different methods. Show more
Keywords: Maximum power point tracking, deep learning, partial shading conditions, efficiency, power
DOI: 10.3233/JIFS-221465
Citation: Journal of Intelligent & Fuzzy Systems, vol. 44, no. 3, pp. 3987-3998, 2023
Authors: Deepa, K. | Ranjeeth Kumar, C.
Article Type: Research Article
Abstract: The remarkable developments in biotechnology as well as the health sciences have resulted in the production of an enormous amount of data, including high-throughput screening genomics information and clinical information obtained through extensive electronic health records (EHRs). The application of data mining and machine learning techniques in the biosciences is today more vital than ever to achieving this objective as attempts are made to intelligently translate all readily available data into knowledge. Diabetes mellitus (DM), a group of metabolic disorders, is well known to have a serious detrimental effect on population lives all over the world. Large-scale research into all …aspects of diabetic has resulted in the production of enormous amounts of data (detection, etiopathophysiology, therapy, etc.). The goal of the current study is to conduct a thorough examination of the use of machine learning, data mining methods and tools in the field of diabetes research, with the first classification making an appearance to be the most popular. These applications relate to a Statistical model and Diagnosis, b) Diabetic Complications, c) Multiple genes Background and Environment, and e) Free Healthcare and Management. Numerous machine learning algorithms were applied. 85% of the methods used were supervised learning approaches, whereas 15% were uncontrolled ones, including association rules. Developed on improved support vector machines, the most successful and widely used algorithm (SVM). Medical datasets were predominantly used in terms of data kind. Show more
Keywords: Diabetes mellitus, data mining, machine learning techniques, medical datasets, screening genomics information and early diagnosis
DOI: 10.3233/JIFS-222574
Citation: Journal of Intelligent & Fuzzy Systems, vol. 44, no. 3, pp. 3999-4011, 2023
Authors: Yu, Jianping | Yuan, Laidi | Zhang, Tao | Fu, Jilin | Cao, Yuyang, | Li, Shaoxiong | Xu, Xueping
Article Type: Research Article
Abstract: The development of natural language processing promotes the progress of general linguistic studies. Based on the selected features and the extracted rules for word sense disambiguation (WSD), some valuable knowledge of the relations between linguistic features and word sense classes may be discovered, which may provide theoretical and practical evidence and references for lexical semantic study and natural language processing. However, many available approaches of feature selection for WSD are in the end to end operation, they can only select the optimal features for WSD, but not provide the rules for WSD, which makes knowledge discovery impossible. Therefore, a new …Filter-Attribute partial ordered structure diagram (Filter-APOSD) approach is proposed in this article to fulfill both feature selection and knowledge discovery. The new approach is a combination of a Filter approach and an Attribute Partial Ordered Structure Diagram (APOSD) approach. The Filter approach is designed and used for filtering the simplest rules for WSD, and the APOSD approach is used to provide the complementary rules for WSD and visualize the structure of the datasets for knowledge discovery. The features occurring in the final rule set are selected as the optimal features. The proposed approach is verified by the benchmark data set from the SemEval-2007 preposition sense disambiguation corpus with around as the target word for WSD. The test result shows that the accuracy of WSD of around is greatly improved comparing with the one by the state of the art, and 17 out of 22 features are finally selected and ranked according to their contribution to the WSD, and some knowledge on the relations between the word senses and the selected features is discovered. Show more
Keywords: Filter-APOSD approach, feature selection, word sense disambiguation, knowledge discovery, English preposition
DOI: 10.3233/JIFS-222715
Citation: Journal of Intelligent & Fuzzy Systems, vol. 44, no. 3, pp. 4013-4028, 2023
Authors: Huang, Bogang | Chen, Fu
Article Type: Research Article
Abstract: The physical education teaching quality evaluation is a very important part of the current physical education teaching reform in colleges and universities, and many experts and scholars have achieved fruitful results in this area, which has played a role in promoting the development of physical education teaching evaluation theory and practice. But at the same time, it should be soberly recognized that, with the deepening reform of physical education teaching in colleges and universities, the current teaching quality evaluation system can no longer meet the needs of the current education situation, and there are still many problems that need to …be further studied and improved. The teaching quality decision evaluation of college volleyball training is looked as the MAGDM. Thus, a useful MAGDM process is needed to cope with it. The information entropy is used for determination of target weight. Based on the grey relational analysis (GRA) and probabilistic double hierarchy linguistic term sets (PDHLTSs), this paper constructs the PDHLTS-GRA for MAGDM issues. Finally, an example for teaching quality evaluation of college volleyball training is used to illustrate the designed method. Show more
Keywords: Multiple attribute group decision making (MAGDM), probabilistic double hierarchy linguistic term sets (PDHLTSs), GRA method, teaching quality evaluation
DOI: 10.3233/JIFS-222945
Citation: Journal of Intelligent & Fuzzy Systems, vol. 44, no. 3, pp. 4029-4039, 2023
Authors: Pandey, Mamta | Litoriya, Ratnesh | Pandey, Prateek
Article Type: Research Article
Abstract: Massive open online courses (MOOCs) are a recent e-learning programme that has received widespread acceptance among several colleges. Student dropout from MOOCs is a big worry in higher education and policy-making circles, as it occurs frequently in colleges that offer these types of courses. The majority of student dropouts are caused by causes beyond the institution’s control. Using an IF-DEMATEL (Intuitive Fuzzy Decision-making Trial and Evaluation Laboratory) approach, the primary factors and potential causal relationships for the high dropout rate were identified. The most effective aspects of massive open online courses (MOOCs) are identified using IF-DEMATEL and CIFCS. Moreover, it …explains the interconnectedness of the various MOOC components. As an added measure, a number of DEMATEL techniques are used to conduct a side-by-side comparison of the results. Decisions made by the educational organisation could benefit from the findings. According to the research, there are a total of twelve indicators across four dimensions that are related to online course withdrawal amongst students. Then, experienced MOOC instructors from various higher education institutions were invited to assess the level of influence of these characteristics on each other. Academic skills and talents, prior experience, course design, feedback, social presence, and social support were identified as six primary characteristics that directly influenced student dropout in MOOCs. Interaction, course difficulty and length, dedication, motivation, and family/work circumstances have all been found to play a secondary part in student dropout in massive open online courses (MOOCs). The causal connections between the major and secondary factors were traced and discussed. The results of this study can help college professors and administrators come up with and implement effective ways to reduce the high number of students who drop out of massive open online courses (MOOCs). Show more
Keywords: Massive open online courses, lifelong learning, intuinistic fuzzy DEMATEL, online learning environments
DOI: 10.3233/JIFS-190357
Citation: Journal of Intelligent & Fuzzy Systems, vol. 44, no. 3, pp. 4041-4058, 2023
Authors: Peng, Lijuan | Xu, Dongsheng
Article Type: Research Article
Abstract: The MULTIMOORA (multiple multi-objective optimization by ratio analysis) method is useful for multiple criteria decision-making method. It is based on expected utility theory and assumes that decision makers are completely rational. However, some studies show that human beings are usually bounded rational, and their regret aversion behaviors play an important role in the decision-making process. Interval neutrosophic sets can more flexibly depict uncertain, incomplete and inconsistent information than single-valued neutrosophic sets. Therefore, this paper improves the traditional MULTIMOORA method by combining the regret theory under interval neutrosophic sets. Firstly, the regret theory is used to calculate the utility value and …regret-rejoice value of each alternatives. Secondly, the criteria weights optimization model based on the maximizing deviation is constructed to obtain the weight vector. Then, the MULTIMOORA method is used to determine the order of the alternatives. Finally, an illustrative example about school selection is provided to demonstrate the feasibility of the proposed method. Sensitivity analysis shows the validity of the regret theory in the proposed method, and the ranking order change with different regret avoidance parameter. Comparisons are made with existing approaches to illustrate the advantage of the proposed method in reflecting decision makers’ psychological preference. Show more
Keywords: Interval neutrosophic set, regret theory, multiple criteria decision making, MULTIMOORA
DOI: 10.3233/JIFS-212903
Citation: Journal of Intelligent & Fuzzy Systems, vol. 44, no. 3, pp. 4059-4077, 2023
Authors: Venkata Lakshmi, S. | Sujatha, K. | Janet, J.
Article Type: Research Article
Abstract: In recent years, speech processing resides a major application in the domain of signal processing. Due to the audibility loss of some speech signals, people with hearing impairment have difficulty in understanding speech, which reintroduces a crucial role in speech recognition. Automatic Speech Recognition (ASR) development is a major challenge in research in the case of noise, domain, vocabulary size, and language and speaker variability. Speech recognition system design needs careful attention to challenges or issues like performance and database evaluation, feature extraction methods, speech representations and speech classes. In this paper, HDF-DNN model has been proposed with the hybridization …of discriminant fuzzy function and deep neural network for speech recognition. Initially, the speech signals are pre-processed to eliminate the unwanted noise and the features are extracted using Mel Frequency Cepstral Coefficient (MFCC). A hybrid Deep Neural Network and Discriminant Fuzzy Logic is used for assisting hearing-impaired listeners with enhanced speech intelligibility. Both DNN and DF have some problems with parameters to address this problem, Enhanced Modularity function-based Bat Algorithm (EMBA) is used as a powerful optimization tool. The experimental results show that the proposed automatic speech recognition-based hybrid deep learning model is effectively-identifies speech recognition more than the MFCC-CNN, CSVM and Deep auto encoder techniques. The proposed method improves the overall accuracy of 8.31%, 9.71% and 10.25% better than, MFCC-CNN, CSVM and Deep auto encoder respectively. Show more
Keywords: Speech recognition, adaptive filter, feature extraction, deep learning, discriminant fuzzy function, deep neural networks, Mel-frequency
DOI: 10.3233/JIFS-212945
Citation: Journal of Intelligent & Fuzzy Systems, vol. 44, no. 3, pp. 4079-4091, 2023
Article Type: Research Article
Abstract: Mobile game providers benefit by selling virtual items in the game. Each event is described as an example in the player log data, and the player indicates the purchase status of the various game props as a plurality of tags, the game props recommendation question is abstractd into a multi-instance multi-label learning problem. On this basis, the fast multi-instance multi-label learning algorithm is designed for recommendation of mobile online game props, and semi-supervised learning is used to improve the recommendation performance. Off-line data sets and the online game experimental results of the actual online mobile phone show that the game …props based on multi-instance multi-tagging learning technology brings a significant increase in game revenue. Show more
Keywords: Machine learning, Multi-Instance Multi-Label Learning (MIML), semi-supervised learning, recommendation
DOI: 10.3233/JIFS-220703
Citation: Journal of Intelligent & Fuzzy Systems, vol. 44, no. 3, pp. 4093-4102, 2023
Authors: Yang, Feifei | Zhang, Pengfei
Article Type: Research Article
Abstract: Multi-source information fusion is a sophisticated estimating technique that enables users to analyze more precisely complex situations by successfully merging key evidence in the vast, varied, and occasionally contradictory data obtained from various sources. Restricted by the data collection technology and incomplete data of information sources, it may lead to large uncertainty in the fusion process and affect the quality of fusion. Reducing uncertainty in the fusion process is one of the most important challenges for information fusion. In view of this, a multi-source information fusion method based on information sets (MSIF) is proposed in this paper. The information set …is a new method for the representation of granularized information source values using the entropy framework in the possibilistic domain. First, four types of common membership functions are used to construct the possibilistic domain as the information gain function (or agent). Then, Shannon agent entropy and Shannon inverse agent entropy are defined, and their summation is used to evaluate the total uncertainty of the attribute values and agents. Finally, an MSIF algorithm is designed by infimum-measure approach. The experimental results show that the performance of Gaussian kernel function is good, which provides an effective method for fusing multi-source numerical data. Show more
Keywords: Multi-source information fusion, information sets, Shannon entropy, uncertainty, fuzzy membership degree
DOI: 10.3233/JIFS-222210
Citation: Journal of Intelligent & Fuzzy Systems, vol. 44, no. 3, pp. 4103-4112, 2023
Authors: Gowthami, S. | Harikumar, R.
Article Type: Research Article
Abstract: Melanoma is one of the widespread skin cancers that has affected millions in past decades. Detection of skin cancer at preliminary stages may become a source of reducing mortality rates. Hence, it is required to develop an autonomous system of reliable type for the detection of melanoma via image processing. This paper develops an independent medical imaging technique using Self-Attention Adaptation Generative Adversarial Network (SAAGAN). The entire processing model involves the process of pre-processing, feature extraction using Scale Invariant Feature Transform (SIFT), and finally, classification using SAAGAN. The simulation is conducted on ISIC 2016/PH2 datasets, where 10-fold cross-validation is undertaken …on a high-end computing platform. The simulation is performed to test the model efficacy against various images on several performance metrics that include accuracy, precision, recall, f-measure, percentage error, Matthews Correlation Coefficient, and Jaccard Index. The simulation shows that the proposed SAAGAN is more effective in detecting the test images than the existing GAN protocols. Show more
Keywords: Autonomous, melanoma, generative adversarial network, scale invariant feature transform, synthetic datasets
DOI: 10.3233/JIFS-220015
Citation: Journal of Intelligent & Fuzzy Systems, vol. 44, no. 3, pp. 4113-4122, 2023
Authors: Bensoltane, Rajae | Zaki, Taher
Article Type: Research Article
Abstract: Aspect-based sentiment analysis (ABSA) is a challenging task of sentiment analysis that aims at extracting the discussed aspects and identifying the sentiment corresponding to each aspect. We can distinguish three main ABSA tasks: aspect term extraction, aspect category detection (ACD), and aspect sentiment classification. Most Arabic ABSA research has relied on rule-based or machine learning-based methods, with little attention to deep learning techniques. Moreover, most existing Arabic deep learning models are initialized using context-free word embedding models, which cannot handle polysemy. Therefore, this paper aims at overcoming the limitations mentioned above by exploiting the contextualized embeddings from pre-trained language models, …specifically the BERT model. Besides, we combine BERT with a temporal convolutional network and a bidirectional gated recurrent unit network in order to enhance the extracted semantic and contextual features. The evaluation results show that the proposed method has outperformed the baseline and other models by achieving an F1-score of 84.58% for the Arabic ACD task. Furthermore, a set of methods are examined to handle the class imbalance in the used dataset. Data augmentation based on back-translation has shown its effectiveness through enhancing the first results by an overall improvement of more than 3% in terms of F1-score. Show more
Keywords: Aspect-based sentiment analysis, aspect category detection, deep learning, BERT, data augmentation, arabic language
DOI: 10.3233/JIFS-221214
Citation: Journal of Intelligent & Fuzzy Systems, vol. 44, no. 3, pp. 4123-4136, 2023
Authors: Aruna, K. | Pradeep, G.
Article Type: Research Article
Abstract: Container technology is highly significant in Information and Communication Technology (ICT) systems. To maximize container effectiveness, scaling plays a significant part. Therefore, in the fog computing framework, containers are an ideal solution for hosting and scaling services. Fog networks help to increase the number of connected devices by connecting to external gateways through the Fog of Things (FoT). It is a new approach to designing and implementing fog computing systems for the IoT. The research article aims on a novel Container with a Fog-based Scalable Self-organizing Network (CFSSN) framework and use a Self-Organizing Network based Light Weight Container (SON-LWC) algorithm …for moving container services for scaling expansion. This work focuses on how to transfer service or data from container to fog and self-group network. It goes over the most recent container migration methodologies, covering both live and cold migration services. Using intelligent container improves high bandwidth efficiency and provides a solution for a scalable network. Show more
Keywords: Docker, container, ICT, CFSSN, FoT, DevOps, SON-LWC
DOI: 10.3233/JIFS-221524
Citation: Journal of Intelligent & Fuzzy Systems, vol. 44, no. 3, pp. 4137-4148, 2023
Authors: Weng, Ling | Lin, Jian | Lv, Shujie | Huang, Yan
Article Type: Research Article
Abstract: As the increasingly serious water pollution problem affects the sustainable development of the ecological environment, the research of water pollution treatment engineering cannot be delayed. Among them, the performance evaluation of water pollution treatment engineering is a major focus. After reading the existing studies, it is found that most of the existing performance evaluation indicators of water pollution treatment engineering have qualitative indicators and there is an unbalanced preference representation. Intuitionistic multiplicative linguistic sets can be a good representation of the qualitative preference and non-preference of decision-makers in the context of decision-making containing unbalanced phenomena. Therefore, to better solve the …problem of water pollution treatment engineering, this paper introduces intuitionistic multiplicative linguistic sets to the problem of water pollution treatment engineering and proposes an effective theory for it. First, considering the multiplicative nature of the intuitionistic multiplicative linguistic set, a new score function and accuracy function are defined, and on this basis, the priority rules of intuitionistic multiplicative linguistic set are given to prepare for the subsequent water pollution treatment engineering performance ranking. And the distance measure of intuitionistic multiplicative linguistic set is introduced and a CRITIC attribute weight determination model under intuitionistic multiplicative linguistic set is obtained on this basis. Secondly, the Choquet integral operator is applied to better represent the correlation between elements. However, the nature of membership degree and non-membership degree shows that it is not reasonable to aggregate the information of intuitionistic multiplicative linguistic sets with a single increasing and decreasing transformation. Therefore, in this paper, we propose the IMLS bi-direction exponent Choquet integral operator, which is inspired by the bi-direction Choquet integral. Lastly, we improve the original preference function of the classical PROMETHEE II method to obtain the bi-directional PROMETHEE II method in intuitionistic multiplicative linguistic information. Finally, a numerical case is also provided to illustrate the scientific and rational application of the bi-directional PROMETHEE II method in intuitionistic multiplicative linguistic information for the performance evaluation of water pollution treatment engineering. Show more
Keywords: Intuitionistic multiplicative linguistic sets, bi-direction Choquet integral, performance evaluation, water pollution treatment, PROMETHEE II method
DOI: 10.3233/JIFS-223373
Citation: Journal of Intelligent & Fuzzy Systems, vol. 44, no. 3, pp. 4149-4173, 2023
Authors: Rawshdeh, Amani A. | Al-jarrah, Heyam H. | Tiwari, Surabhi | Tallafha, Abdalla A.
Article Type: Research Article
Abstract: In this paper, we use the soft set theory and the concept of semi-linear uniform spaces to introduce the notion of soft semi-linear uniform spaces with its generalization, briefly soft-GSL US . We investigate some properties of soft topology that induced by soft-GSL US . Also, we use the members of soft-GSL US to define a soft proximity space and a soft filter then we establish the relationships between them. Finally, we give the perceptual application of soft semi-linear uniform structures by employing the natural transformation of a soft semi-linear uniform space to a soft proximity.
Keywords: Soft set, soft point, soft topology, soft semi-linear uniform spaces, soft proximity
DOI: 10.3233/JIFS-220587
Citation: Journal of Intelligent & Fuzzy Systems, vol. 44, no. 3, pp. 4175-4184, 2023
Authors: Lin, Jiaoqing | Yu, Rui | Xu, Xinrui
Article Type: Research Article
Abstract: The construction of real estate projects is a large and complex system project, and the completion of the construction goals on time and with quality is the key to the sustainable development of construction enterprises. In the process of real estate project construction, the management performance of building decoration material suppliers will directly affect the efficiency of real estate enterprises. How to correctly evaluate the building material suppliers (BMSs) of real estate enterprises and establish a good partnership affects the economic benefits of the enterprise and the possibility of subsequent cooperation between the two sides, which has become one of …the issues of importance to real estate enterprises. The selection and application of BMSs is the MAGDM. In this defined paper, the defined 2-tuple linguistic neutrosophic number (2TLNN) grey relational analysis (2TLNN-GRA) decision method is generated based on GRA and 2-tuple linguistic neutrosophic sets (2TLNSs). The 2TLNN-GRA method is generated for MAGDM. Finally, the decision example for BMSs selection is generated and some comparisons is generated. Show more
Keywords: Multiple attribute group decision making (MAGDM), 2TLNSs, GRA method, building material suppliers (BMSs)
DOI: 10.3233/JIFS-221410
Citation: Journal of Intelligent & Fuzzy Systems, vol. 44, no. 3, pp. 4185-4196, 2023
Authors: Du, Weidong
Article Type: Research Article
Abstract: Nowadays, the model compression method of knowledge distillation has drawn great attentions in Recommender systems (RS). The strategy of bidirectional distillation performs the bidirectional learning for both the teacher and the student models such that these two models can collaboratively improve with each other. However, this strategy cannot effectively exploit representation capabilities of each item and lack of the interpretability for the importance of items. Thus, how to develop an effective sampling scheme is still valuable for us to further study and explore. In this paper, we propose an improved rank discrepancy-aware item sampling strategy to enhance the performance of …bidirectional distillation learning. Specifically, by employing the distillation loss, we train the teacher and student models to reflect the fact that a user has partiality for the unobserved items. Then, we propose the improved rank discrepancy-aware sampling strategy based on feedback learning mechanism to transfer just the useful information which can effectively enhance each other. The key part of the multiple distillation training aims to select valuable items which can be re-distilled in the network for training. The proposed technique can effectively solve the problem of high ambiguity in nature for recommender system. Experimental results on several real-world recommender system datasets well demonstrate that the improved bidirectional distillation strategy shows better performance. Show more
Keywords: Bidirectional distillation, student-teacher learning, rank discrepancy aware items selection, recommender system
DOI: 10.3233/JIFS-222063
Citation: Journal of Intelligent & Fuzzy Systems, vol. 44, no. 3, pp. 4197-4206, 2023
Authors: Li, Qiyu | Langari, Reza
Article Type: Research Article
Abstract: Human-computer interaction(HCI) has broad range of applications. One particular application domain is rehabilitation devices. Several bioelectric signals can potentially be used in HCI systems in general and rehabilitation devices in particular. Surface ElectroMyoGraphic(sEMG) signal is one of the more important bioelectric signals in this context. The sEMG signal is formed by muscle activation although the details are rather complex. Applications of sEMG are referred is commonly referred to as myoelectric control since the dominant use of this signal is to activate a device even if (as the term control may imply) feedback is not always used in the process. With …the development of deep neural networks, various deep learning architectures are used for sEMG-based gesture recognition with many researchers having reported good performance. Nevertheless, challenges remain in accurately recognizing sEMG patterns generated by gestures produced by hand or the upper arm. For instance one of the difficulties in hand gesture recognition is the influence of limb positions. Several papers have shown that the accuracy of gesture classification decreases when the limb position changes even if the gesture remains the same. Prior work by our team has shown that dynamic gesture recognition is in principle more reliable in detecting human intent, which is often the underlying idea of gesture recognition. In this paper, a Convolutional Neural Network (CNN) with Long Short-Term Memory or LSTM (CNN-LSTM) is proposed to classify five common dynamic gestures. Each dynamic gesture would be performed in five different limb positions as well. The trained neural network model is then used to enable a human subject to control a 6 DoF (Degree of Freedom) robotic arm with 1 DoF gripper. The results show a high level of accurate performance achieved with the proposed approach. In particular, the overall accuracy of the dynamic gesture recognition is 84.2%. The accuracies vary across subjects but remain at approximately 90%for some subjects. Show more
Keywords: Human-computer interaction, sEMG signal, neural network, gesture recognition
DOI: 10.3233/JIFS-222985
Citation: Journal of Intelligent & Fuzzy Systems, vol. 44, no. 3, pp. 4207-4221, 2023
Authors: Wang, Jing
Article Type: Research Article
Abstract: The clothing images on the Internet is growing rapidly, and there is an increasing demand for the clothing images’ intelligent classification. In this paper, Region-Based Fully Convolutional Networks (R-FCN) is introduced into the clothing image recognition. In the clothing image classification, because the network training time is long and the recognition rate of deformed clothing images is low, an improved framework HSR-FCN is proposed. The regional suggestion network and HyperNet network in R-FCN are integrated in the new framework, the learning approach of image features is changed in HSR-FCN, the higher accuracy can be achieved in a shorter training time. …A spatial transformation network is introduced into the model, the input clothing image and feature map are spatially transformed and aligned, the feature learning is strengthened for multi-angle clothing and deformed clothing. The experimental results show that the improved HSR-FCN model is used to strengthen effectively the learning of deformed clothing images, and with a shorter training time, the average accuracy rate of the original network model R-FCN is increased by about 3%, it reachs 96.69%. Show more
Keywords: Garment images, deep learning, image classification, region-based fully convolutional networks (R-FCN), HyperNet, region proposal networks, spatial transformation networks
DOI: 10.3233/JIFS-220109
Citation: Journal of Intelligent & Fuzzy Systems, vol. 44, no. 3, pp. 4223-4232, 2023
Authors: Song, Tao
Article Type: Research Article
Abstract: The quality of physical education (PE) teaching in colleges and universities is the basis for the development of PE disciplines in colleges and universities, so currently thinking about how to effectively improve the quality of PE teaching in colleges and universities has become the first and foremost problem for many college and university PE departments to solve. In order to solve this problem, it is necessary to build a reasonable and scientific evaluation and monitoring system of PE teaching quality, because only by establishing an effective evaluation and monitoring system of teaching quality can we evaluate and supervise all the …PE operation properly and scientifically, and then give feedback in the process of evaluation and supervision, such evaluation and monitoring system can greatly promote the continuous improvement of PE teaching quality in colleges and universities. This is also one of the most effective means to improve the quality of PE and achieve the goal of PE in colleges and universities. The PE teaching quality evaluation in Colleges and Universities is frequently viewed as the multiple attribute group decision making (MAGDM) issue. In this paper, the 2-tuple linguistic neutrosophic number grey relational analysis (2TLNN-GRA) method is built based on the traditional grey relational analysis (GRA) and 2-tuple linguistic neutrosophic sets (2TLNNSs). Then, a numerical example for PE teaching quality evaluation in Colleges and Universities has been given and some comparisons is used to illustrate advantages of 2TLNN-GRA method. Show more
Keywords: Multiple attribute group decision making (MAGDM) problems, 2-tuple linguistic neutrosophic sets (2TLNSs), GRA method, teaching quality evaluation
DOI: 10.3233/JIFS-221857
Citation: Journal of Intelligent & Fuzzy Systems, vol. 44, no. 3, pp. 4233-4244, 2023
Authors: Reji, M. | Joseph, Christeena | Nancy, P. | Lourdes Mary, A.
Article Type: Research Article
Abstract: Intrusion detection systems (IDS) can be used to detect irregularities in network traffic to improve network security and protect data and systems. From 2.4 times in 2018 to three times in 2023, the number of devices linked to IP networks is predicted to outnumber the total population of the world. In 2020, approximately 1.5 billion cyber-attacks on Internet of Things (IoT) devices have been reported. Classification of these attacks in the IoT network is the major objective of this research. This research proposes a hybrid machine learning model using Seagull Optimization Algorithm (SOA) and Extreme Learning Machine (ELM) classifier to …classify and detect attacks in IoT networks. The CIC-IDS-2018 dataset is used in this work to evaluate the proposed model. The SOA is implemented for feature selection from the dataset, and the ELM is used to classify attacks from the selected features. The dataset has 80 features, in the proposed model used only 22 features with higher scores than the original dataset. The dataset is divided into 80% for training and 20% for testing. The proposed SOA-ELM model obtained 94.22% accuracy, 92.95% precision, 93.45% detection rate, and 91.26% f1-score. Show more
Keywords: Intrusion detection, IoT, SOA, ELM, feature selection, attack classification, machine learning
DOI: 10.3233/JIFS-222427
Citation: Journal of Intelligent & Fuzzy Systems, vol. 44, no. 3, pp. 4245-4255, 2023
Authors: Karthiga, S. | Abirami, A.M.
Article Type: Research Article
Abstract: This article has been retracted. A retraction notice can be found at https://doi.org/10.3233/JIFS-219433 .
DOI: 10.3233/JIFS-220408
Citation: Journal of Intelligent & Fuzzy Systems, vol. 44, no. 3, pp. 4257-4272, 2023
Authors: Tang, Chao | Tang, Yong | Zeng, Zhuolin | Zhang, Linghao | Xiang, Siyu
Article Type: Research Article
Abstract: Because the traditional methods do not select the best feature collection in feature analysis, the accuracy and effectiveness of user feature clustering are not high, and the accuracy of user feature classification is not high. Therefore, this paper proposes a customer feature analysis method based on power consumption feature selection and behavior portrait of different people. The optimal feature set is obtained according to the maximum correlation and minimum redundancy criterion, and the user portrait task is described. The spatial feature domain classification method is used to classify the user portrait information, and the user label database is constructed according …to the classification results. The AP clustering algorithm is used to cluster the power user portrait information and complete the customer feature analysis. Experimental results show that this method effectively improves the accuracy and effectiveness of user feature clustering, and the accuracy of user feature classification is high, indicating that the application effect is good. Show more
Keywords: Power consumption characteristics, behavioral portraits, customer characteristics, AP clustering algorithm, information classification
DOI: 10.3233/JIFS-220615
Citation: Journal of Intelligent & Fuzzy Systems, vol. 44, no. 3, pp. 4273-4283, 2023
Authors: Yin, Ming | Zhou, Pan | Xu, Taige | Jiang, Jijiao
Article Type: Research Article
Abstract: Requirements are important in software development. Ambiguous requirements cause inconsistent understanding by developers, which leads to rework, delayed delivery, and other problems, and may even have devastating effects on the project. A large number of requirements text written in natural language are not concise, intuitive, and accurate. This condition increases the workload of designers and the difficulty of their tasks. An effective solution for the aforementioned problems is to extract actors and use cases from the requirement texts. This study proposes a model for extracting actors and using cases automatically, which combines bi-directional long short-term memory (BiLSTM) and conditional random …fields. BiLSTM is used to capture the contextual information of the texts, and CRF is used to calculate the tag transfer score and determine the most accurate tag sequence, which aims to extract actors and use cases. Results show that the accuracy of extraction is significantly improved compared with the baseline method, which verifies the effectiveness of the proposed method in extracting actors and use cases. Show more
Keywords: BiLSTM-CRF, software requirements, actors and use cases, context
DOI: 10.3233/JIFS-221094
Citation: Journal of Intelligent & Fuzzy Systems, vol. 44, no. 3, pp. 4285-4299, 2023
Authors: Park, Choonkil | Rehman, Noor | Ali, Abbas
Article Type: Research Article
Abstract: The q -rung orthopair fuzzy sets accommodate more uncertainties than the Pythagorean fuzzy sets and hence their applications are much extensive. Under the q -rung orthopair fuzzy set, the objective of this paper is to develop new types of q -rung orthopair fuzzy lower and upper approximations by applying the tolerance degree on the similarity between two objects. After employing tolerance degree based q -rung orthopair fuzzy rough set approach to it any times, we can get only the six different sets at most. That is to say, every rough set in a universe can be approximated by only six …sets, where the lower and upper approximations of each set in the six sets are still lying among these six sets. The relationships among these six sets are established. Furthermore, we propose tolerance degree based multi granulation optimistic/pessimistic q -rung orthopair fuzzy rough sets and investigate some of their properties. Another main contribution of this paper is to disclose the ideas of different kinds of approximations called approximate precision, rough degree, approximate quality and their mutual relationship. Finally a technique is devloped to rank the alternatives in a q -rung orthopair fuzzy information system based on similarity relation. We find that the proposed method/technique is more efficient when compared with other existing techniques. Show more
Keywords: q-rung orthopair fuzzy set, fuzzy rough set, similarity relation, tolerance classes, multigranulation q-rung orthopair fuzzy rough sets
DOI: 10.3233/JIFS-221249
Citation: Journal of Intelligent & Fuzzy Systems, vol. 44, no. 3, pp. 4301-4321, 2023
Authors: Apinaya Prethi, K.N. | Sangeetha, M. | Nithya, S.
Article Type: Research Article
Abstract: Due to decentralized infrastructure in modern Internet-of-Things (IoT), the tasks should be shared around the edge devices via network resources and traffic prioritizations, which weaken the information interoperability. To solve this issue, a Minimized upgrading batch Virtual Machine (VM) Scheduling and Bandwidth Planning (MSBP) was adopted to reduce the amount of batches needed to complete the system-scale upgrade and allocate the bandwidth for VM migration matrices. But, the suboptimal use of VM and possible loss of tasks may provide inadequate Resource Allocation (RA). Hence, this article proposes an MSBP with the Priority-based Task Scheduling (MSBP-PTS) algorithm to allocate the tasks …in a prioritized way and maximize the profit by deciding which request must handle by the edge itself or send to the cloud server. At first, every incoming request in its nearest fog server is allocated and processed by the priority scheduling unit. Few requests are reallocated to other fog servers when there is an inadequate resource accessible for providing the request within its time limit. Then, the request is sent to the cloud if the fog node doesn’t have adequate resources, which reduces the response time. However, the MSBP is the heuristics solution which is complex and does not ensure the global best solutions. Therefore, the MSBP-PTS is improved by adopting an Optimization of RA (MSBP-PTS-ORA) algorithm, which utilizes the Krill Herd (KH) optimization instead of heuristic solutions for RA. The simulation outcomes also demonstrate that the MSBP-PTS-ORA achieve a sustainable network more effectively than other traditional algorithms. Show more
Keywords: Internet-of-things, edge devices, resource allocation, priority levels, task scheduling, krill herd optimization
DOI: 10.3233/JIFS-221430
Citation: Journal of Intelligent & Fuzzy Systems, vol. 44, no. 3, pp. 4323-4334, 2023
Authors: Wu, Nengkai | Jia, Dongyao | Zhang, Chuanwang | Li, Ziqi
Article Type: Research Article
Abstract: Cervical cancer is one of the most common causes of death in women in the world, and early screening is an effective means of diagnosis and treatment, which can greatly improve the survival rate. Cervical cell classification model is an effective means to assist screening. However, the existing single model, including CNNs and machine learning methods, still has shortcomings such as unclear feature meaning, low accuracy and insufficient supervision. To solve the shortcomings of a single model, a novel framework based on strong feature Convolutional Neural Networks (CNN)-Lagrangian Support Vector Machine (LSVM) model is proposed for the accurate classification of …cervical cells. Strong features extracted by hybrid methods are fused with the abstract ones from hidden layers of LeNet-5, then the fused features are processed with dimension reduction and fed into the LSVM classifier optimized by Adaboost for classification. Proposed model is evaluated using the augmented Herlev and private dataset with the metrics including accuracy (Acc) , sensitivity (Sn) , and specificity (Sp) , which outperformed the baselines and state-of-the-art approaches with the Acc of 99.5% and 94.2% in 2&7-class classification, respectively. Show more
Keywords: Cervical cancer, strong feature, convolutional neural networks (CNN), lagrangian support vector machine (LSVM), cancer cell classification
DOI: 10.3233/JIFS-221604
Citation: Journal of Intelligent & Fuzzy Systems, vol. 44, no. 3, pp. 4335-4355, 2023
Authors: Liu, Zhiyong | Jin, Ying | Bao, Hong | Zhao, Yong
Article Type: Research Article
Abstract: A novel for an integrated fault and states estimator was proposed for the generalized linear discrete-time system with disturbances. The proposed scheme was based on a Self-Organizing fuzzy Luenberger system to estimate the states and approximate the fault information simultaneously for the generalized linear discrete-time system. For this purpose, a generalized linear discrete-time system with disturbances was transformed into an equivalent standard state-space system with disturbances and faults. Then, the faults and disturbances of generalized linear discrete-time system can be separated with the coordinate transform, meanwhile the Self-Organizing fuzzy Luenberger estimator was designed to obtain the accurate fault information. Based …on the obtained fault information, the fault detection experiments were performed, and the fault feature parameters required for fault isolation were determined. Finally, the proposed strategy was applied for a direct current motor to demonstrate the effectiveness of the proposed approach. Show more
Keywords: Self-organizing fuzzy Luenberger method, coordinate transform, faults and disturbances separation, fault detection, generalized linear discrete time system
DOI: 10.3233/JIFS-222890
Citation: Journal of Intelligent & Fuzzy Systems, vol. 44, no. 3, pp. 4357-4370, 2023
Authors: Wu, Xiu-Yun | Niu, Yu-Jie | Zhang, Hui-Min
Article Type: Research Article
Abstract: In this paper, the notion of M -fuzzifying convex remotehood systems is introduced and characterizations of M -fuzzifying convex spaces are obtained. Further, notions of remote mappings and M -fuzzifying convex quasi-uniformities are introduced. It is proved that M -fuzzifying convex quasi-uniform space and M -fuzzifying convex space are mutually induced. In order to discuss categorical relationships among M -fuzzifying convex quasi-uniform spaces, M -fuzzifying convex remotehood spaces and M -fuzzifying convex spaces, notions of M -fuzzifying quasi-uniformizable convex structures and M -fuzzifying quasi-uniformizable convex remotehood spaces are presented. It is proved that the category of M -fuzzifying quasi-uniformizable convex …spaces and the category of M -fuzzifying quasi-uniformizable convex remotehood spaces can be embedded into the category of M -fuzzifying convex quasi-uniform spaces as subcategories. Show more
Keywords: M-fuzzifying convex space, M-fuzzifying convex remotehood space, M-fuzzifying quasi-uniformizable convex space, M-fuzzifying convex quasi-uniform space, M-fuzzifying quasi-uniform preserving mapping
DOI: 10.3233/JIFS-223036
Citation: Journal of Intelligent & Fuzzy Systems, vol. 44, no. 3, pp. 4371-4382, 2023
Authors: Liu, Shengyao | Lin, Jiaoqing | Xu, Xinrui
Article Type: Research Article
Abstract: The construction industry is the basic industry of the country. With the rapid development of the economy, the construction industry has grown rapidly and the competition in the construction market has become more intense. The competition in the construction market is not only between individual enterprises, but also between the whole supply chain that provides products. Therefore, it is imperative to introduce the idea of supply chain management, strengthen the cooperation with suppliers and improve competitiveness. Supplier evaluation and selection is one of the first issues to be solved for the development of supply chain management. The selection and application …of building material suppliers is a classic multiple attribute decision making (MADM). In this paper, the intuitionistic fuzzy sets (IFSs) and Hamacher operations is introduced and the induced intuitionistic fuzzy Hamacher power ordered weighted average (I-IFHPOWA) operator is built. Meanwhile, the properties of built operator are analyzed. Then, the I-IFHPOWA operator is applied to solve the MADM under IFSs. Finally, an example for building material supplier selection is utilized to proof this built model. Show more
Keywords: Multiple attribute decision making (MADM), intuitionistic fuzzy sets (IFSs), I-OWA operator, I-IFHPOWA operator, building material suppliers
DOI: 10.3233/JIFS-221437
Citation: Journal of Intelligent & Fuzzy Systems, vol. 44, no. 3, pp. 4383-4395, 2023
Authors: Jagadish Kumar, N. | Balasubramanian, C.
Article Type: Research Article
Abstract: In a cloud computing system, resources can be accessed at a minimal cost whenever users raise request needs. The primary goal of cloud computing is to provide cost-efficiency of service scheduling to clients fast while using the least number of resources. Cloud Service Provisioning (CSP) can match consumer needs with minimal use of resources. There are several metaheuristic optimization algorithms have been developed in the field of CSP resource minimization and adequate computing resources are required to ensure client satisfaction. However, it performs poorly under a variety of practical constraints, including a vast amount of user data, smart filtering to …boost user search, and slow service delivery. In this regard, propose a Black Widow Optimization (BWO) algorithm that reduces cloud service costs while ensuring that all resources are devoted only to end-user needs. It is a nature-inspired metaheuristic algorithm that involved a multi-criterion correlation that is used to identify the relationship between user requirements and available services and thereby, it is defined as an MS-BWO algorithm. Thus finds the most efficient virtual space allocation in a cloud environment. It uses a service provisioning dataset with metrics like energy usage, bandwidth utilization rate, computational cost, and memory consumption. In terms of data performance, the proposed MS-BWO outperforms exceed than other existing state-of-art-algorithms including Work-load aware Autonomic Resource Management Scheme(WARMS), Fuzzy Clustering Load balancer(FCL), Agent-based Automated Service Composition (A2SC) and Load Balancing Resource Clustering (LBRC), and an autonomic approach for resource provisioning (AARP ) Show more
Keywords: Cloud service provisioning, Resource utilization, Virtual machine, Metaheuristic black widow optimization
DOI: 10.3233/JIFS-222048
Citation: Journal of Intelligent & Fuzzy Systems, vol. 44, no. 3, pp. 4397-4417, 2023
Authors: Ali, Jawad | Ali, Jawad | Naeem, Muhammad | Mahmood, Waqas
Article Type: Research Article
Abstract: The q-rung picture linguistic set (q-RPLS) is an effective tool for managing complex and unpredictable information by changing the parameter ‘q’ regarding hesitancy degree. In this article, we devise some generalized operational laws of q-RPLS in terms of the Archimedean t-norm and t-conorm. Based on the proposed generalized operations, we define two types of generalized aggregation operators, namely the q-rung picture linguistic averaging operator and the q-rung picture linguistic geometric operator, and study their relevant characteristics in-depth. With a view toward applications, we discuss certain specific cases of the proposed generalized aggregation operators with a range of parameter values. Furthermore, …we explore q-rung picture linguistic distance measure and its required axioms. Then we put forward a technique for q-RPLSs based on the proposed aggregation operators and distance measure to solve multi-attribute decision-making (MADM) challenges with unknown weight information. At last, a practical example is presented to demonstrate the suggested approaches’ viability and to perform the sensitivity and comparison analysis. Show more
Keywords: q-rung-Picture linguistic fuzzy set, generalized operations, generalized aggregation operators, entropy, decision-making
DOI: 10.3233/JIFS-222292
Citation: Journal of Intelligent & Fuzzy Systems, vol. 44, no. 3, pp. 4419-4443, 2023
Authors: Umamaheswari, K.M. | Muthu kumaran, A.M.J.
Article Type: Research Article
Abstract: Cloud technology has raised significant prominence providing a unique market economic approach for resolving large-scale challenges in heterogeneous distributed systems. Through the use of the network, it delivers secure, quick, and profitable information storage with computational capability. Cloud applications are available on-demand to meet a variety of user QoS standards. Due to a large number of users and tasks, it is important to achieve efficient scheduling of tasks submitted by users. One of the most important and difficult non-deterministic polynomial-hard challenges in cloud technology is task scheduling. Therefore, in this paper, an efficient task scheduling approach is developed. To achieve …this objective, a hybrid genetic algorithm with particle swarm optimization (HGPSO) algorithm is presented. The scheduling is performed based on the multi-objective function; the function is designed based on three parameters such as makespan, cost, and resource utilization. The proper scheduling system should minimize the makespan and cost while maximizing resource utilization. The proposed algorithm is implemented using WorkflowSim and tested with arbitrary task graphs in a simulated setting. The results obtained reveal that the proposed HGPSO algorithm outperformed all available scheduling algorithms that are compared across a range of experimental setups. Show more
Keywords: Cloud computing, HGPSO, workflow, task scheduling, makespan, resource utilization, multi-objective function, and fitness
DOI: 10.3233/JIFS-222842
Citation: Journal of Intelligent & Fuzzy Systems, vol. 44, no. 3, pp. 4445-4458, 2023
Authors: Garg, Harish | Kahraman, Cengiz | Ali, Zeeshan | Mahmood, Tahir
Article Type: Research Article
Abstract: Complex Pythagorean fuzzy set (CPFS) is a massive influential principle for managing ambiguity and inconsistent information in genuine life dilemmas. To determine the relationship among any number of attributes, the Hamy mean (HM) operators based on interaction operational laws are very dominant and massive flexible to manage awkward and problematic information. This study aims to combine the complex Pythagorean fuzzy (CPF) information with interaction HM operators to initiate the CPF interaction HM (CPFIHM) operator, CPF interaction weighted HM (CPFIWHM) operator, CPF interaction dual HM (CPFIDHM) operator, CPF interaction weighted dual HM (CPFIWDHM) operator and their powerful properties. Additionally, a decision-making …strategy for determining the security threats in the computer is elaborated under the interaction of HM operators based on the CPF setting. Numerous examples are illustrated with the help of presented operators to determine the consistency and flexibility of the investigated operators. Finally, with the help of sensitivity analysis, advantages, and geometrical representation, the supremacy, and efficiency of the presented works are also elaborated. Show more
Keywords: Complex pythagorean fuzzy sets, interaction hamy mean operators, interaction dual hamy mean operators, security threats in computers
DOI: 10.3233/JIFS-220947
Citation: Journal of Intelligent & Fuzzy Systems, vol. 44, no. 3, pp. 4459-4479, 2023
Authors: Neena Raj, N.R. | Shreelekshmi, R.
Article Type: Research Article
Abstract: This paper presents a secure image authentication scheme for tamper localization and recovery at pixel level. The proposed scheme encrypts the watermark comprising tamper localization code and self-recovery code using chaotic sequence to ensure security. This scheme uses pixel to block conversion technique for ensuring lossless recovery of the original image from an untampered watermarked image. For enhancing the localization accuracy, a multilevel tamper localization strategy is used. The experimental results show that the proposed scheme generates watermarked images with minimal information loss and can withstand copy-move, image splicing, content removal, vector quantization, collage and content only attacks. This scheme …has better security, better tamper localization accuracy and better recovered image quality under extensive tampering and takes less computation time in comparison to the state-of-the-art schemes. Show more
Keywords: Chaotic sequence, fragile watermarking, image authentication, image recovery, tamper localization
DOI: 10.3233/JIFS-221245
Citation: Journal of Intelligent & Fuzzy Systems, vol. 44, no. 3, pp. 4481-4493, 2023
Authors: Shi, Jianzhong
Article Type: Research Article
Abstract: Fuzzy clustering has been widely applied in T-S fuzzy model identification for nonlinear systems, however, tradition type-1 fuzzy clustering algorithms can’t deal with uncertainties in real world, an improved interval type-2 fuzzy c-regression model (IT2-FCRM) clustering is proposed for T-S fuzzy model identification in this paper. The improved IT2-FCRM adapts a new objective function, which makes the boundary of clustering more clearly and reduces the influence of outliers or noisy data on clustering results. The premise parameters of T-S fuzzy model are upper and lower hyperplanes obtained by improved IT2-FCRM, and the upper and lower hyperplanes are used to build …hyper-plane-shaped type-2 Gaussian membership function. Compared with the hyper-sphere-shaped membership function of tradition IT2-FCRM, the hyper-plane-shaped membership function is more coincided with point to plane sample distance described by FCRM clustering. The simulation results of several benchmark problems and a real bed temperature in circulating fluidized bed plant show that the identification algorithm has higher accuracy. Show more
Keywords: Fuzzy identification, interval type-2 fuzzy c-regression model, fuzzy clustering, T-S fuzzy model, orthogonal least squares
DOI: 10.3233/JIFS-221434
Citation: Journal of Intelligent & Fuzzy Systems, vol. 44, no. 3, pp. 4495-4507, 2023
Authors: Bakhshi, M. | Ahn, S. S. | Jun, Y. B. | Xin, X. L. | Borzooei, R. A.
Article Type: Research Article
Abstract: We study the lattice structure of fuzzy A-ideals in an mv-module M (fai (M), symbolically) and show that it is a complete Heyting lattice and so the set of its pseudocomplements forms a Boolean algebra. In the sequel, the properties of fuzzy congruences in an mv-module are investigated and using them some structural theorems are stated and proved. Finally, it is proved that fai (M) can be embedded into the lattice of fuzzy congruences.
Keywords: mv-module, fuzzy A-ideal, fuzzy congruence, distributive lattice
DOI: 10.3233/JIFS-221552
Citation: Journal of Intelligent & Fuzzy Systems, vol. 44, no. 3, pp. 4509-4519, 2023
Authors: Li, Yufei | Hu, Nanyan | Ye, Yicheng | Wu, Menglong
Article Type: Research Article
Abstract: In order to solve the problem of underground goafs, particularly in light of the importance ranking of evaluation indices being more subjective and catastrophe progression values being large and too concentrated in the catastrophe progression method, the importance of multiple indices is ranked by the maximizing deviation method. An S-shaped curve is used to establish a regression function to improve the value of catastrophe progression method. First, three first-level evaluation indices and eight second-level evaluation indices are selected to establish an index system for risk evaluation of the underground goaf. Next, based on the principle of catastrophe progression method, an …improved catastrophe model for its risk evaluation is established. Finally, sample training and verification are performed based on the improved evaluation model. The evaluation results show that the improved catastrophe progression method objectively ranks the importance of the evaluation indices of each layer, which improves the credibility of the evaluation results. The evaluation results are consistent with the actual geological data and detection results, which verifies the validity and accuracy of the evaluation model. However, only 87.5% of the risk levels obtained by the fuzzy comprehensive evaluation method are completely consistent with the improved catastrophe progression method, and the ranking error of risk value within one rank also accounted for 87.5%. Therefore, the results calculated by the improved catastrophe progression method are more accurate. The numerical gap of the improved catastrophe progression values becomes larger, from [0.796, 0.969] to [0.275, 0.691], which is 2.405 times of the interval difference of the catastrophe progression values before the improvement, which makes the numerical distribution of the catastrophe progression values more scientific and reasonable, with a higher resolution level. Therefore, it is reasonable and feasible to use the improved catastrophe progression method for the risk evaluation of the underground goaf, which can provide a certain theoretical basis and engineering guidance for underground goaf disaster control and management. Show more
Keywords: Catastrophe progression method, maximizing deviation method, regression model, underground goaf, risk evaluation, catastrophe model
DOI: 10.3233/JIFS-222094
Citation: Journal of Intelligent & Fuzzy Systems, vol. 44, no. 3, pp. 4521-4536, 2023
Authors: Bai, Wenhui | Zhang, Chao | Zhai, Yanhui | Sangaiah, Arun Kumar
Article Type: Research Article
Abstract: Water quality inspection (WQI) is one of the primary ways to ensure the safe utilization of water resources, and complicated data modeling, fusion and analysis play a significant role in seeking the resource with the best water quality. Nevertheless, the challenges of missing data, relatively large differences in decision results and bounded rationality owned by decision-makers (DMs) in terms of WQI still exist nowadays. Thus, from the aspect of stable and behavioral decision-making in multi-granularity incomplete intuitionistic fuzzy information systems (MG-IIFISs), the paper investigates a comprehensive multi-attribute group decision-making (MAGDM) approach for the application of WQI. First, the concept of …MG-IIFISs is built by modeling MAGDM problems with intuitionistic fuzzy numbers (IFNs), then a new transformation scheme is constructed for transforming MG-IIFISs into multi-granularity intuitionistic fuzzy information systems (MG-IFISs) based on the similarity principle. Second, three types of multigranulation intuitionistic fuzzy probabilistic rough sets (MG IF PRSs) are developed by referring to the MULTIMOORA (Multi-Objective Optimization by Ratio Analysis plus the full MULTIplicative form) method. Afterwards, attribute weights are objectively calculated based on the best-worst method (BWM), and a new stable and behavioral MAGDM approach is constructed by means of the TODIM (an acronym in Portuguese for interactive multi-criteria decision-making) method. At last, a case study in the setting of WQI is conducted with the support of a UCI data set, and sensitivity analysis, comparative analysis and experimental analysis are investigated to display the validity of the proposed approach. In general, the proposed approach improves the stability of decision results via MULTIMOORA and BWM, and also fully considers the bounded rationality of DMs’ psychological behaviors from the aspect of the TODIM method, which has certain advantages in the community of MAGDM studies. Show more
Keywords: Granular computing, rough set, MULTIMOORA, incomplete intuitionistic fuzzy information system, water quality inspection
DOI: 10.3233/JIFS-222385
Citation: Journal of Intelligent & Fuzzy Systems, vol. 44, no. 3, pp. 4537-4556, 2023
Authors: Kaur, Kamalpreet | Gupta, Asha
Article Type: Research Article
Abstract: The present paper proposes a novel version of inducing nano topology by using new kinds of approximation operators via two ideals with respect to a general binary relation. This approach improves the accuracy of the approximation quite significantly. These newly defined approximations constitute the generalized version of rough sets defined by Pawlak in 1982. A comparison is drawn between the suggested technique and the already existing ones to demonstrate the significance of the proposed ideology. In addition, the standard notion of nano topology, based on an equivalence relation is generalized to the binary relation, which can have a broader scope …when applied to intelligent systems. Also, the significance of this approach is demonstrated by an example where an algorithm is given to find the key factors responsible for the profit of a company along with the comparison to the previous notions. Likewise, the proposed algorithm can be used in all fields of science to simplify complex information systems in extracting useful data by finding the core. Show more
Keywords: Nano topology, rough sets, ideals, bi-ideal approximation, core
DOI: 10.3233/JIFS-222958
Citation: Journal of Intelligent & Fuzzy Systems, vol. 44, no. 3, pp. 4557-4567, 2023
Authors: Arulaalan, M. | Aparna, K. | Nair, Vicky | Banala, Rajesh
Article Type: Research Article
Abstract: It is difficult for underwater archaeologists to recover the fine details of a captured image on the seabed when the image quality worsens due to the presence of more noisy artefacts, a mismatched device colour map, and a blurry image. To resolve this problem, we present a machine learning-based image restoration model (ML-IRM) for improving the visual quality of underwater images that have been deteriorated. Using this model, a home-made bowl set-up is created in which a different liquid concentration is used to replicate seabed water variation, and an object is dipped, or a video is played behind the bowl …to recognise the object texture captured image in high-resolution for training the image restoration model is proposed. Gaussian and bidirectional pre-processing filters are used to both the high and low frequency components of the training image, respectively. To improve the clarity of the high-frequency channel background, soft-thresholding decreases the presence of distracting artefacts. On the other hand, the ML-IRM model can effectively keep the object textures on a low frequency channel. Experiment findings show that the proposed ML-IRM model improves the quality of seabed images, eliminates colour mismatches, and allows for more detailed information extraction. Blue shadow, green shadow, hazy, and low light test samples are randomly selected from all five datasets including U45 [1 ], EUVP [2 ], DUIE [3 ], UIEB [4 ], UM-ImageNet [5 ], and the proposed model. Peak Signal to Noise Ratio (PSNR) and Structural Similarity Index (SSIM) are computed for each condition separately. We list the values of PSNR (at 16.99 dB, 15.96 dB, 18.09 dB, 15.67 dB, 9.39 dB, 17.98 dB, 19.32 dB, 14.27 dB, 12.07 dB, and 25.47 dB) and SSIM (at 0.52, 0.57, 0.33, 0.47, 0.44, and 0.23, respectively. Similarly, it demonstrates that the proposed ML-IRM achieves a satisfactory result in terms of colour correction and contrast adjustment when applied to the problem of improving underwater images captured in low light. To do so, high-resolution images were captured in two low-light conditions (after 6 p.m. and again at 6 a.m.) for the training image datasets, and the results of their observations were compared to those of other existing state-of-the-art-methods. Show more
Keywords: ML-IRM, image denoising, different low-lighting conditions, Gaussian and bidirectional filters, high and low frequency channel
DOI: 10.3233/JIFS-223310
Citation: Journal of Intelligent & Fuzzy Systems, vol. 44, no. 3, pp. 4569-4591, 2023
Authors: He, Xiaoxu
Article Type: Research Article
Abstract: In clinical practice, segmenting polyps from colonoscopy images plays an important role in the diagnosis and treatment of colorectal cancer since it provides valuable information. However, accurate polyp segmentation is full of changes due to the following reasons: (1) the small training datasets with a limited number of samples and the lack of data variability; (2) the same type of polyps with a variation in texture, size, and color; (3) the weak boundary between a polyp and its surrounding mucosa. To address these challenges, we propose a novel robust deep neural network based on data augmentation, called Robust Multi-center Multi-resolution …Unet (RMMSUNet), for the polyp segmentation task. Data augmentation and Multi-center training are both utilized to increase the amount and diversity of training dataset. The new multi-resolution blocks make up for the lack of fine-grained information in U-Net, and ensures the generation of more accurate pixel-level segmentation prediction graphs. Region-based refinement is added as the post-processing for the network output, to correct some wrongly predicted pixels and further refine the segmentation results. Quantitative and qualitative evaluations on the challenging polyp dataset show that our RMMSUNet improves the segmentation accuracy significantly, when comparing to other SOTA algorithms. Show more
Keywords: Image segmentation, colon cancer, U-Net, polyp segmentation, data augmentation
DOI: 10.3233/JIFS-223340
Citation: Journal of Intelligent & Fuzzy Systems, vol. 44, no. 3, pp. 4593-4604, 2023
Authors: Ramamurthy, Priyadarshini | Nandagopal, Malarvizhi
Article Type: Research Article
Abstract: Fog computing enables the data analysis done nearer to the place of data generated, which makes a very short response time. Trust is essential for the effective performance of the fog nodes to overcome uncertainty, vulnerability, and risk. To enhance the trusted connection in fog computing, blockchain technology is adopted as a solution. Inclusion of blockchain in fog environment ensures consistency and security among the fog nodes. Each fog node mines every transaction and stores them as block creating a chain of blocks. In this proposed work, the adaption of blockchain technology is designed as a suitable solution for establishing …trusted security between fog nodes and for which a qualitative assessment is done. Show more
Keywords: Fog computing, fog nodes, blockchain, trust, data security, ethereum blockchain, smart contract
DOI: 10.3233/JIFS-222014
Citation: Journal of Intelligent & Fuzzy Systems, vol. 44, no. 3, pp. 4605-4612, 2023
Authors: Eti, Serkan | Dinçer, Hasan | Yüksel, Serhat | Gökalp, Yaşar
Article Type: Research Article
Abstract: In this study, a new fuzzy decision-making model is created to evaluate whether the solar panels are efficient to minimize energy costs of the hospitals. The weights of the criteria are calculated by considering T-Spherical fuzzy decision-making trial and evaluation laboratory (DEMATEL) method. Moreover, for the purpose of measuring the coherency of the findings, analysis results are also calculated for different t values. Additionally, by making improvements to some criticisms to the classical DEMATEL method, a new technique is created by the name of TOP-DEMATEL while integrating some steps of technique for order preference by similarity to ideal solution (TOPSIS) …to the DEMATEL technique. The main novelty of this study is that it is analyzed whether the solar panels are effective in reducing the costs of hospitals with an original decision-making model. It is concluded that generating own energy in the long run is the most crucial item according to both T-Spherical fuzzy DEMATEL and TOP-DEMATEL methods. The analysis results are quite similar for different t values. This situation gives information about the coherency and reliability of the findings. This situation gives information that the solar panels should be taken into consideration for the hospitals because they will minimize energy dependency of the hospitals. On the other side, the results of T-Spherical fuzzy TOP-DEMATEL indicate that the high initial investment cost is the second most critical factor in this respect. This finding is quite different by comparing with the results of T-Spherical fuzzy TOP-DEMATEL. Hence, it is seen that cost effectiveness should also be taken into consideration for the decision of generating the solar panels in the hospitals. Show more
Keywords: T-Spherical fuzzy sets, TOP-DEMATEL, solar energy, health industry
DOI: 10.3233/JIFS-222968
Citation: Journal of Intelligent & Fuzzy Systems, vol. 44, no. 3, pp. 4613-4625, 2023
Authors: Mathina Kani, Mohamed Ali Jinna | Parvathy, Meenakshi Sundaram | Maajitha Banu, Samsammal | Abdul Kareem, Mohamed Saleem
Article Type: Research Article
Abstract: In this article, a methodological approach to classifying malignant melanoma in dermoscopy images is presented. Early treatment of skin cancer increases the patient’s survival rate. The classification of melanoma skin cancer in the early stages is decided by dermatologists to treat the patient appropriately. Dermatologists need more time to diagnose affected skin lesions due to high resemblance between melanoma and benign. In this paper, a deep learning based Computer-Aided Diagnosis (CAD) system is developed to accurately classify skin lesions with a high classification rate. A new architecture has been framed to classify the skin lesion diseases using the Inception v3 …model as a baseline architecture. The extracted features from the Inception Net are then flattened and are given to the DenseNet block to extracts more fine grained features of the lesion disease. The International Skin Imaging Collaboration (ISIC) archive datasets contains 3307 dermoscopy images which includes both benign and malignant skin images. The dataset images are trained using the proposed architecture with the learning rate of 0.0001, batch size 64 using various optimizer. The performance of the proposed model has also been evaluated using confusion matrix and ROC-AUC curves. The experimental results show that the proposed model attains a highest accuracy rate of 91.29 % compared to other state-of-the-art methods like ResNet, VGG-16, DenseNet, MobileNet. A confusion matrix and ROC curve are used to evaluate the performance analysis of skin images. The classification accuracy, sensitivity, specificity, testing accuracy, and AUC values were obtained at 90.33%, 82.87%, 91.29%, 87.12%, and 87.40%. Show more
Keywords: Image processing, deep learning, feature extraction, image classification, Inception v3 model, computer aided diagnosis
DOI: 10.3233/JIFS-221386
Citation: Journal of Intelligent & Fuzzy Systems, vol. 44, no. 3, pp. 4627-4641, 2023
Authors: Liang, Shaohui | Wei, Botao
Article Type: Research Article
Abstract: Teaching-learning-based optimization algorithm (TLBO) is a swarm intelligence optimization algorithm that simulates classroom teaching phenomenon. In order to solve the problem that TLBO algorithm is easy to fall into local optimum and has poor stability, an improved teaching-learning-based optimization algorithm based on fusion difference mutation (IDMTLBO) is proposed. Firstly, adaptive teaching factors are introduced. Secondly, in the teaching stage, each student studies according to the gap between himself and the teacher, which improves the convergence speed and convergence accuracy of the algorithm. Finally, in the learning stage, students are divided into two levels according to their learning level, and two …students are randomly selected to improve the iterative equation in the learning stage with the difference mutation strategy, It improves the disadvantage that the algorithm is easy to fall into local optimum. Numerical experiments show that the convergence speed and convergence accuracy of the algorithm are obviously better than TLBO algorithm, DMTLBO algorithm, DSTLBO algorithm. Show more
Keywords: Teaching-learning-based optimization, adaptive teaching factors, the improved teaching stage, learning stages, differential mutation
DOI: 10.3233/JIFS-221019
Citation: Journal of Intelligent & Fuzzy Systems, vol. 44, no. 3, pp. 4643-4651, 2023
Authors: Fathima Perveen, P. A. | John, Sunil Jacob | Kamacı, Hüseyin | Baiju, T.
Article Type: Research Article
Abstract: Picture fuzzy sets are a direct extension of fuzzy sets and intuitionistic fuzzy sets, recently developed as a mathematical tool for solving uncertainty-related problems. In this paper, a novel similarity measure and corresponding weighted similarity measure between two picture fuzzy sets are proposed after indicating some disadvantages of the current similarity measures of picture fuzzy sets through some exemplary numerical examples. Also, some of their basic properties are discussed. Further, a picture fuzzy decision making algorithm based on the similarity aggregation method is constructed and then applied to the decision making problem. It is also used to deal with a …medical diagnosis problem to detect which disease a patient may be suffering from. Finally, the effectiveness of the proposed similarity measure is demonstrated by making comparison with the present picture fuzzy similarity measures. Show more
Keywords: Fuzzy sets, picture fuzzy sets, similarity measure, medical diagnosis, decision making
DOI: 10.3233/JIFS-222334
Citation: Journal of Intelligent & Fuzzy Systems, vol. 44, no. 3, pp. 4653-4665, 2023
Authors: Wang, Chaofeng
Article Type: Research Article
Abstract: This article has been retracted. A retraction notice can be found at https://doi.org/10.3233/JIFS-219433 .
DOI: 10.3233/JIFS-212862
Citation: Journal of Intelligent & Fuzzy Systems, vol. 44, no. 3, pp. 4667-4679, 2023
Authors: Elavarasan, B. | Muhiuddin, G. | Porselvi, K. | Jun, Y. B.
Article Type: Research Article
Abstract: Many uncertainties arise in real-world problems, making them impossible to solve using conventional approaches. Researchers all over the world have developed new mathematical theories like fuzzy set theory and rough set theory to better understand the uncertainties that occur in various fields. Soft set theory, which was recently introduced, offers a novel approach to real-world problem solving by removing the need to set the membership function. This is helpful in resolving a variety of issues, and much progress is being made these days. Recently, Jun introduced the concept of a hybrid structure, which blends the concepts of a fuzzy set …as well as a soft set. In this paper, we define the hybrid k -sum and hybrid k -product of k -ideals of semiring and investigate their properties. We illustrate with an example that the hybrid sum and hybrid product of two k-ideals are not always hybrid ideals. We also describe semiring regularity constraints in terms of hybrid k -ideal structures. Show more
Keywords: Semiring, hybrid structure, ideal, hybrid product, k-ideal, hybrid k-product, hybrid ideals, hybrid k-ideals
DOI: 10.3233/JIFS-222335
Citation: Journal of Intelligent & Fuzzy Systems, vol. 44, no. 3, pp. 4681-4691, 2023
Authors: Fu, Xue | Zhu, Liangkuan | Wu, Bowen | Wang, Jingyu | Zhao, Xiaohan | Ryspayev, Arystan
Article Type: Research Article
Abstract: To improve the traditional image segmentation, an efficient multilevel thresholding segmentation method based on improved Chimp Optimization Algorithm (IChOA) is developed in this paper. Kapur entropy is utilized as the objective function. The best threshold values for RGB images’ three channels are found using IChOA. Meanwhile, several strategies are introduced including population initialization strategy combining with Gaussian chaos and opposition-based learning, the position update mechanism of particle swarm algorithm (PSO), the Gaussian-Cauchy mutation and the adaptive nonlinear strategy. These methods enable the IChOA to raise the diversity of the population and enhance both the exploration and exploitation. Additionally, the search …ability, accuracy and stability of IChOA have been significantly enhanced. To prove the superiority of the IChOA based multilevel thresholding segmentation method, a comparison experiment is conducted between IChOA and 5 six meta-heuristic algorithms using 12 test functions, which fully demonstrate that IChOA can obtain high-quality solutions and almost does not suffer from premature convergence. Furthermore, by using 10 standard test images the IChOA-based multilevel thresholding image segmentation method is compared with other peers and evaluated the segmentation results using 5 evaluation indicators with the average fitness value, PSNR, SSIM, FSIM and computational time. The experimental results reveal that the presented IChOA-based multilevel thresholding image segmentation method has tremendous potential to be utilized as an image segmentation method for color images because it can be an effective swarm intelligence optimization method that can maintain a delicate balance during the segmentation process of color images. Show more
Keywords: Multi-threshold color image segmentation, chimp optimization algorithm, particle swarm algorithm, self-adaptive strategy, Kapur’s entropy
DOI: 10.3233/JIFS-223224
Citation: Journal of Intelligent & Fuzzy Systems, vol. 44, no. 3, pp. 4693-4715, 2023
Authors: Perumal, T. Sudarson Rama | Jegatheesan, A. | Jayachandran, A.
Article Type: Research Article
Abstract: This article has been retracted. A retraction notice can be found at https://doi.org/10.3233/JIFS-219433 .
DOI: 10.3233/JIFS-220308
Citation: Journal of Intelligent & Fuzzy Systems, vol. 44, no. 3, pp. 4717-4732, 2023
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]