Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Arulaalan, M.a; * | Aparna, K.b | Nair, Vickyc | Banala, Rajeshc
Affiliations: Department of Electronics and Communication Engineering, CK College of Engineering & Technology, Cuddalore, Tamil Nadu, India | Department of Electronics and Communication Engineering, JNTUA College of Engineering Kalikiri, Kalikiri, Andhra Pradesh, India | Department of Computer Science and Engineering, TKR College of Engineering and Technology, Meerpet, Hyderabad, Telangana, India
Correspondence: [*] Corresponding author. M. Arulaalan, Department of Electronics and Communication Engineering, CK College of Engineering & Technology, Cuddalore, Tamil Nadu, India. E-mail: [email protected].
Abstract: It is difficult for underwater archaeologists to recover the fine details of a captured image on the seabed when the image quality worsens due to the presence of more noisy artefacts, a mismatched device colour map, and a blurry image. To resolve this problem, we present a machine learning-based image restoration model (ML-IRM) for improving the visual quality of underwater images that have been deteriorated. Using this model, a home-made bowl set-up is created in which a different liquid concentration is used to replicate seabed water variation, and an object is dipped, or a video is played behind the bowl to recognise the object texture captured image in high-resolution for training the image restoration model is proposed. Gaussian and bidirectional pre-processing filters are used to both the high and low frequency components of the training image, respectively. To improve the clarity of the high-frequency channel background, soft-thresholding decreases the presence of distracting artefacts. On the other hand, the ML-IRM model can effectively keep the object textures on a low frequency channel. Experiment findings show that the proposed ML-IRM model improves the quality of seabed images, eliminates colour mismatches, and allows for more detailed information extraction. Blue shadow, green shadow, hazy, and low light test samples are randomly selected from all five datasets including U45 [1], EUVP [2], DUIE [3], UIEB [4], UM-ImageNet [5], and the proposed model. Peak Signal to Noise Ratio (PSNR) and Structural Similarity Index (SSIM) are computed for each condition separately. We list the values of PSNR (at 16.99 dB, 15.96 dB, 18.09 dB, 15.67 dB, 9.39 dB, 17.98 dB, 19.32 dB, 14.27 dB, 12.07 dB, and 25.47 dB) and SSIM (at 0.52, 0.57, 0.33, 0.47, 0.44, and 0.23, respectively. Similarly, it demonstrates that the proposed ML-IRM achieves a satisfactory result in terms of colour correction and contrast adjustment when applied to the problem of improving underwater images captured in low light. To do so, high-resolution images were captured in two low-light conditions (after 6 p.m. and again at 6 a.m.) for the training image datasets, and the results of their observations were compared to those of other existing state-of-the-art-methods.
Keywords: ML-IRM, image denoising, different low-lighting conditions, Gaussian and bidirectional filters, high and low frequency channel
DOI: 10.3233/JIFS-223310
Journal: Journal of Intelligent & Fuzzy Systems, vol. 44, no. 3, pp. 4569-4591, 2023
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]