Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Fu, Xuea; * | Zhu, Liangkuana | Wu, Bowenb | Wang, Jingyua | Zhao, Xiaohana | Ryspayev, Arystana
Affiliations: [a] College of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin, Heilongjiang, China | [b] School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, China
Correspondence: [*] Corresponding author. Xue Fu, College of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin, Heilongjiang, China. E-mail: [email protected].
Abstract: To improve the traditional image segmentation, an efficient multilevel thresholding segmentation method based on improved Chimp Optimization Algorithm (IChOA) is developed in this paper. Kapur entropy is utilized as the objective function. The best threshold values for RGB images’ three channels are found using IChOA. Meanwhile, several strategies are introduced including population initialization strategy combining with Gaussian chaos and opposition-based learning, the position update mechanism of particle swarm algorithm (PSO), the Gaussian-Cauchy mutation and the adaptive nonlinear strategy. These methods enable the IChOA to raise the diversity of the population and enhance both the exploration and exploitation. Additionally, the search ability, accuracy and stability of IChOA have been significantly enhanced. To prove the superiority of the IChOA based multilevel thresholding segmentation method, a comparison experiment is conducted between IChOA and 5 six meta-heuristic algorithms using 12 test functions, which fully demonstrate that IChOA can obtain high-quality solutions and almost does not suffer from premature convergence. Furthermore, by using 10 standard test images the IChOA-based multilevel thresholding image segmentation method is compared with other peers and evaluated the segmentation results using 5 evaluation indicators with the average fitness value, PSNR, SSIM, FSIM and computational time. The experimental results reveal that the presented IChOA-based multilevel thresholding image segmentation method has tremendous potential to be utilized as an image segmentation method for color images because it can be an effective swarm intelligence optimization method that can maintain a delicate balance during the segmentation process of color images.
Keywords: Multi-threshold color image segmentation, chimp optimization algorithm, particle swarm algorithm, self-adaptive strategy, Kapur’s entropy
DOI: 10.3233/JIFS-223224
Journal: Journal of Intelligent & Fuzzy Systems, vol. 44, no. 3, pp. 4693-4715, 2023
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]