Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Li, Yufeia | Hu, Nanyana; * | Ye, Yichenga; b | Wu, Menglonga
Affiliations: [a] School of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, P.R. China | [b] Industrial Safety Engineering Technology Research Center of Hubei Province, Wuhan P.R. China
Correspondence: [*] Corresponding author. Nanyan Hu, School of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan 430081, P.R. China. E-mail: [email protected].
Abstract: In order to solve the problem of underground goafs, particularly in light of the importance ranking of evaluation indices being more subjective and catastrophe progression values being large and too concentrated in the catastrophe progression method, the importance of multiple indices is ranked by the maximizing deviation method. An S-shaped curve is used to establish a regression function to improve the value of catastrophe progression method. First, three first-level evaluation indices and eight second-level evaluation indices are selected to establish an index system for risk evaluation of the underground goaf. Next, based on the principle of catastrophe progression method, an improved catastrophe model for its risk evaluation is established. Finally, sample training and verification are performed based on the improved evaluation model. The evaluation results show that the improved catastrophe progression method objectively ranks the importance of the evaluation indices of each layer, which improves the credibility of the evaluation results. The evaluation results are consistent with the actual geological data and detection results, which verifies the validity and accuracy of the evaluation model. However, only 87.5% of the risk levels obtained by the fuzzy comprehensive evaluation method are completely consistent with the improved catastrophe progression method, and the ranking error of risk value within one rank also accounted for 87.5%. Therefore, the results calculated by the improved catastrophe progression method are more accurate. The numerical gap of the improved catastrophe progression values becomes larger, from [0.796, 0.969] to [0.275, 0.691], which is 2.405 times of the interval difference of the catastrophe progression values before the improvement, which makes the numerical distribution of the catastrophe progression values more scientific and reasonable, with a higher resolution level. Therefore, it is reasonable and feasible to use the improved catastrophe progression method for the risk evaluation of the underground goaf, which can provide a certain theoretical basis and engineering guidance for underground goaf disaster control and management.
Keywords: Catastrophe progression method, maximizing deviation method, regression model, underground goaf, risk evaluation, catastrophe model
DOI: 10.3233/JIFS-222094
Journal: Journal of Intelligent & Fuzzy Systems, vol. 44, no. 3, pp. 4521-4536, 2023
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]