Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Purchase individual online access for 1 year to this journal.
Price: EUR 410.00Impact Factor 2024: 0.4
Fundamenta Informaticae is an international journal publishing original research results in all areas of theoretical computer science. Papers are encouraged contributing:
- solutions by mathematical methods of problems emerging in computer science
- solutions of mathematical problems inspired by computer science.
Topics of interest include (but are not restricted to): theory of computing, complexity theory, algorithms and data structures, computational aspects of combinatorics and graph theory, programming language theory, theoretical aspects of programming languages, computer-aided verification, computer science logic, database theory, logic programming, automated deduction, formal languages and automata theory, concurrency and distributed computing, cryptography and security, theoretical issues in artificial intelligence, machine learning, pattern recognition, algorithmic game theory, bioinformatics and computational biology, quantum computing, probabilistic methods, & algebraic and categorical methods.
Authors: Casagrande, Alberto | Omodeo, Eugenio G. | Proietti, Maurizio
Article Type: Other
DOI: 10.3233/FI-2021-2048
Citation: Fundamenta Informaticae, vol. 181, no. 1, pp. v-vi, 2021
Authors: Hillston, Jane | Marin, Andrea | Piazza, Carla | Rossi, Sabina
Article Type: Research Article
Abstract: In this paper, we study an information flow security property for systems specified as terms of a quantitative Markovian process algebra, namely the Performance Evaluation Process Algebra (PEPA). We propose a quantitative extension of the Non-Interference property used to secure systems from the functional point view by assuming that the observers are able to measure also the timing properties of the system, e.g., the response time of certain actions or its throughput. We introduce the notion of Persistent Stochastic Non-Interference (PSNI) based on the idea that every state reachable by a process satisfies a basic Stochastic Non-Interference (SNI) …property. The structural operational semantics of PEPA allows us to give two characterizations of PSNI : one based on a bisimulation-like equivalence relation inducing a lumping on the underlying Markov chain, and another one based on unwinding conditions which demand properties of individual actions. These two different characterizations naturally lead to efficient methods for the verification and construction of secure systems. A decision algorithm for PSNI is presented and an application of PSNI to a queueing system is discussed. Show more
Keywords: Process Algebra, Non-Interference, Stochastic models
DOI: 10.3233/FI-2021-2049
Citation: Fundamenta Informaticae, vol. 181, no. 1, pp. 1-35, 2021
Authors: Cantone, Domenico | De Domenico, Andrea | Maugeri, Pietro | Omodeo, Eugenio G.
Article Type: Research Article
Abstract: We report on an investigation aimed at identifying small fragments of set theory (typically, sublanguages of Multi-Level Syllogistic) endowed with polynomial-time satisfiability decision tests, potentially useful for automated proof verification. Leaving out of consideration the membership relator ∈ for the time being, in this paper we provide a complete taxonomy of the polynomial and the NP-complete fragments involving, besides variables intended to range over the von Neumann set-universe, the Boolean operators ∪ ∩ \, the Boolean relators ⊆, ⊈,=, ≠, and the predicates ‘• = Ø’ and ‘Disj(•, •)’, meaning ‘the argument set is empty’ and ‘the arguments are disjoint …sets’, along with their opposites ‘• ≠ Ø and ‘¬Disj(•, •)’. We also examine in detail how to test for satisfiability the formulae of six sample fragments: three sample problems are shown to be NP-complete, two to admit quadratic-time decision algorithms, and one to be solvable in linear time. Show more
Keywords: Satisfiability problem, Computable set theory, Boolean set theory, Expressibility, NP-completeness, Proof verification
DOI: 10.3233/FI-2021-2050
Citation: Fundamenta Informaticae, vol. 181, no. 1, pp. 37-69, 2021
Authors: Costantini, Stefania | Formisano, Andrea
Article Type: Research Article
Abstract: In this paper we present a methodology for introducing customizable metalogic features in logic-based knowledge representation and reasoning languages. The proposed approach is based on concepts of introspection and reflection previously introduced and discussed by various authors in relevant literature. This allows a knowledge engineer to specify enhanced reasoning engines by defining properties and meta-properties of relations as expressible for instance in OWL. We employ meta-level axiom schemata based upon a naming (reification) device. We propose general principles for extending the semantics of “host” formalisms accordingly. Consequently, suitable pre-defined libraries of properties can be made available, while user-defined new schemata …are also allowed. We make the specific cases of Answer Set Programming (ASP) and Datalog± , where such features may be part of software engineering toolkits for these programming paradigms. On the one hand, concerning ASP, we extend the programming principles and practice to accommodate the proposed methodology, so as to perform meta-reasoning within the plain ASP semantics. The computational complexity of the resulting framework does not change. On the other hand, we show how metalogic features can significantly enrich Datalog± with minor changes to its operational semantics (provided in terms of “chase”) and, also in this case, no additional complexity burden. Show more
Keywords: Meta-reasoning, Answer Set Programming, Datalog±, Web-ontologies
DOI: 10.3233/FI-2021-2051
Citation: Fundamenta Informaticae, vol. 181, no. 1, pp. 71-98, 2021
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]