Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Purchase individual online access for 1 year to this journal.
Price: EUR 410.00Impact Factor 2024: 0.4
Fundamenta Informaticae is an international journal publishing original research results in all areas of theoretical computer science. Papers are encouraged contributing:
- solutions by mathematical methods of problems emerging in computer science
- solutions of mathematical problems inspired by computer science.
Topics of interest include (but are not restricted to): theory of computing, complexity theory, algorithms and data structures, computational aspects of combinatorics and graph theory, programming language theory, theoretical aspects of programming languages, computer-aided verification, computer science logic, database theory, logic programming, automated deduction, formal languages and automata theory, concurrency and distributed computing, cryptography and security, theoretical issues in artificial intelligence, machine learning, pattern recognition, algorithmic game theory, bioinformatics and computational biology, quantum computing, probabilistic methods, & algebraic and categorical methods.
Authors: Jamroga, Wojciech | Konikowska, Beata | Kurpiewski, Damian | Penczek, Wojciech
Article Type: Research Article
Abstract: Some multi-agent scenarios call for the possibility of evaluating specifications in a richer domain of truth values. Examples include runtime monitoring of a temporal property over a growing prefix of an infinite path, inconsistency analysis in distributed databases, and verification methods that use incomplete anytime algorithms, such as bounded model checking. In this paper, we present multi-valued alternating-time temporal logic (mv-ATL → ∗ ), an expressive logic to specify strategic abilities in multi-agent systems. It is well known that, for branchingtime logics, a general method for model-independent translation from multi-valued to two-valued model checking exists. …We show that the method cannot be directly extended to mv-ATL → ∗ . We also propose two ways of overcoming the problem. Firstly, we identify constraints on formulas for which the model-independent translation can be suitably adapted. Secondly, we present a model-dependent reduction that can be applied to all formulas of mv-ATL → ∗ . We show that, in all cases, the complexity of verification increases only linearly when new truth values are added to the evaluation domain. We also consider several examples that show possible applications of mv-ATL → ∗ and motivate its use for model checking multi-agent systems. Show more
DOI: 10.3233/FI-2020-1955
Citation: Fundamenta Informaticae, vol. 175, no. 1-4, pp. 207-251, 2020
Authors: Janicki, Ryszard | Mikulski, Łukasz
Article Type: Research Article
Abstract: Traces and their extensions as comtraces, step traces and interval traces are quotient monoids over sequences or step sequences that play an important role in the formal analysis and verification of concurrent systems. Step traces are generalizations of comtraces and classical traces while interval traces are specialized traces that can deal with interval order semantics. The algebraic structures and their properties as projections, hidings, canonical forms and other invariants are very well established for traces and fairly well established for comtraces. For step traces and interval traces they are the main subject of this paper.
Keywords: traces, interval traces, step traces, partially commutative monoids
DOI: 10.3233/FI-2020-1956
Citation: Fundamenta Informaticae, vol. 175, no. 1-4, pp. 253-280, 2020
Authors: Sanchez Martin, Jose Angel | Petre, Ion
Article Type: Research Article
Abstract: Network controllability focuses on the concept of driving the dynamical system associated to a directed network of interactions from an arbitrary initial state to an arbitrary final state, through a well-chosen set of input functions applied in a minimal number of so-called input nodes. In earlier studies we and other groups demonstrated the potential of applying this concept in medicine. A directed network of interactions may be built around the main known drivers of the disease being studied, and then analysed to identify combinations of drug targets controlling survivability-essential genes in the network. This paper takes the next step and …focuses on patient data. We demonstrate that comprehensive protein-protein interaction networks can be built around patient genetic data, and that network controllability can be used to identify possible personalised drug combinations. We discuss the algorithmic methods that can be used to construct and analyse these networks. Show more
Keywords: Network controllability, personalised medicine, multiple myeloma, mutated genes, essential genes, drug target genes
DOI: 10.3233/FI-2020-1957
Citation: Fundamenta Informaticae, vol. 175, no. 1-4, pp. 281-299, 2020
Authors: Thiagarajan, P. S. | Yang, Shaofa
Article Type: Research Article
Abstract: We present the theory of distributed Markov chains (DMCs). A DMC consists of a collection of communicating probabilistic agents in which the synchronizations determine the probability distribution for the next moves of the participating agents. The key feature of a DMC is that the synchronizations are deterministic, in the sense that any two simultaneously enabled synchronizations involve disjoint sets of agents. Using our theory of DMCs we show how one can analyze the behavior using the interleaved semantics of the model. A key point is, the transition system which defines the interleaved semantics is—except in degenerate cases—not a Markov …chain. Hence one must develop new techniques to analyze these behaviors exhibiting both concurrency and stochasticity. After establishing the core theory we develop a statistical model checking procedure which verifies the dynamical properties of the trajectories generated by the the model. The specifications consist of Boolean combinations of component-wise bounded linear time temporal logic formulas. We also provide a probabilistic Petri net representation of DMCs and use it to derive a probabilistic event structure semantics. Show more
DOI: 10.3233/FI-2020-1958
Citation: Fundamenta Informaticae, vol. 175, no. 1-4, pp. 301-325, 2020
Authors: Verbeek, Fons J. | Cao, Lu
Article Type: Research Article
Abstract: Biology is 3D. Therefore, it is important to be able to analyze phenomena in a spatiotemporal manner. Different fields in computational sciences are useful for analysis in biology; i.e. image analysis, pattern recognition and machine learning. To fit an empirical model to a higher abstraction, however, theoretical computer science methods are probed. We explore the construction of empirical 3D graphical models and develop abstractions from these models in L-systems. These systems are provided with a profound formalization in a grammar allowing generalization and exploration of mathematical structures in topologies. The connections between these computational approaches are illustrated by a …case study of the development of the lactiferous duct in mice and the phenotypical effects from different environmental conditions we can observe on it. We have constructed a workflow to get 3D models from different experimental conditions and use these models to extract features. Our aim is to construct an abstraction of these 3D models to an L-system from features that we have measured. From our measurements we can make the productions for an L-system. In this manner we can formalize the arborization of the lactiferous duct under different environmental conditions and capture different observations. All considered, this paper illustrates the joint of empirical with theoretical computational sciences and the augmentation of the interpretation of the results. At the same time, it shows a method to analyze complex 3D topologies and produces archetypes for developmental configurations. Show more
Keywords: L-system, Phenotype analysis, Center-line topology, lactiferous duct, 3D model representation
DOI: 10.3233/FI-2020-1959
Citation: Fundamenta Informaticae, vol. 175, no. 1-4, pp. 327-345, 2020
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]