Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Chen, Yuhenga; | Wang, Yinshuna | Chai, Huaa | Zhang, Guangyia | Wang, Jiana
Affiliations: [a] State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources North China Electric Power, University Beijing, China
Correspondence: [*] Corresponding author: Yuheng Chen, No. 2 Beinong Road, Changping District, Beijing, China. Tel.: +8613205632896, E-mail: [email protected]
Abstract: REBCO coated conductors (REBCO CCs), the second-generation high-temperature superconducting (2G HTS) tapes, are subjected to electromagnetic stress in an electromagnetic environment, and tremendous stress can damage tapes such that lose their superconductivity. This paper uses the numerical method to simulate the electromagnetic response and related mechanical properties of the quasi-isotropic strand (Q-IS) under the applied magnetic field and carrying current and their combination. The simulation is based on the Kim model in which the critical current density is related to the magnetic field. First, the stress distribution of the superconducting core inside the Q-IS under the applied magnetic field and if transport current is given. According to the different magnetic field amplitudes and current amplitudes, the influence of the copper sheath and the filling layer thickness on the maximum stress of the Q-IS is studied. Also calculated the current distribution, magnetic field penetration, and stress distribution of the Q-IS under the conditions of transporting direct current (DC) and applying a 2 Hz sinusoidal alternating current (AC) magnetic field. The performance of the Q-IS is entirely different in the rising and falling durations of the magnetic field. Stress concentration occurs at the four corners of the superconducting core. The left and right sides of the superconducting core with relatively large stress and deformation are easily damaged.
Keywords: Quasi-isotropic strand, Kim model, current distribution, magnetic flux pinning, electromagnetic stress
DOI: 10.3233/JAE-210078
Journal: International Journal of Applied Electromagnetics and Mechanics, vol. 69, no. 1, pp. 107-124, 2022
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]