Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Wang, Zhia | He, Cunfua | Liu, Xiuchenga; | Zhang, Xiaodonga
Affiliations: [a] College of Mechanical Engineering and Applied Electronics Technology, Beijing University of Technology, Beijing, China
Correspondence: [*] Corresponding author: Xiucheng Liu, College of Mechanical Engineering and Applied Electronics Technology, Beijing University of Technology, Beijing 100124, China
Abstract: Ising model is a promising tool for predicting magnetic Barkhausen noise (MBN) signal on electromagnetic nondestructive evaluation (ENDE). However, theoretical prediction of MBN of composite ferromagnetic materials using Ising model is seldom reported. In this study, we incorporate double Boltzmann transition function with the exchange coupling efficiency (J) of Ising model to achieve simulation of MBN in layered materials. The transition behavior of J was assumed to represent the changes in magnetic properties from hard layer to soft layer. Monte Carlo algorithm is used to solve the Ising model to obtain the MBN of layered material. The influence of the volume fraction (p) of hard layer in the double Boltzmann transition function on the shape of MBN profiles was investigated through both simulation and experiments. In the experiments, two-layer ferromagnetic materials was laminated using SAE 1065 carbon steel films of different thickness and a base strip of SAE 1045 carbon steel with a thickness of 20 mm. Both simulation and experimental results show that the MBN peak of soft layer gradually descends with the increase in thickness of SAE 1065 (or the volume fraction of hard layer). The second-order Gaussian function was used to fit the MBN envelop for extract the peaks of hard and soft layers from both experimental and simulation results. The ratio of the MBN peak of hard layer to soft layer demonstrates monotonously increasing trend as the value of p increases. Therefore, ratio of the MBN peak can act as good indicator for qualitative characterization of the changes of thickness or volume fraction of hard layer in two-layer ferromagnetic materials.
Keywords: magnetic Barkhausen noise, Ising model, layered ferromagnetic materials, Monte Carlo algorithm
DOI: 10.3233/JAE-190034
Journal: International Journal of Applied Electromagnetics and Mechanics, vol. 61, no. 4, pp. 537-548, 2019
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]