Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Shen, Haifeng | Li, Qunxia | Guo, Jun | Liu, Gang
Affiliations: School of Information Engineering, Beijing University of Posts and Telecommunications, Beijing, 100876, China. E-mail: [email protected] | School of Management, University of Science and Technology Beijing Beijing, 100083, China. E-mail: [email protected]
Abstract: This paper proposes a novel robust speech recognition approach based on the model-based feature compensation. The approach combines the GMM-based feature compensation and the HMM-based feature compensation together and employs the multiple recognition passes to achieve the best performance. In the initial recognition procedure, the GMM-based feature compensation approach is employed to give better clean model and noise model. Then we further refine these models by employing the HMM-based feature compensation approach. The statistical model of the clean speech and the noise is combined by using vector Taylor series (VTS) approximation. The experimental results show that the novel approach makes a significant improvement compared to the GMM-based feature compensation and the HMM-based feature compensation without any compensation in the initial pass.
Keywords: robust speech recognition, feature compensation, EM algorithm
Journal: Fundamenta Informaticae, vol. 72, no. 4, pp. 529-539, 2006
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]