Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Shaheen, Tanzeelaa | Stell, John G.b; *
Correspondence: [*] Address for correspondence: School of Computing, University of Leeds, Leeds LS2 9JT, Leeds, U.K.
Abstract: We generalize the well-known correspondence between partitions and equivalence relations on a set to the case of graphs and hypergraphs. This is motivated by the role that partitions and equivalence relations play in Rough Set Theory and the results provide some of the foundations needed to develop a theory of rough graphs. We use one notion of a partition of a hypergraph, which we call a graphical partition, and we show how these structures correspond to relations on a hypergraph having additional properties. In the case of a hypergraph with only nodes and no edges these properties are exactly the usual reflexivity, symmetry and transitivity properties required for equivalence relations on a set. We present definitions for upper and lower approximations of a subgraph with respect to a graphical partition. These generalize the well-known approximations in Rough Set Theory. We establish fundamental properties of our generalized approximations and provide examples of these constructions on some graphs.
DOI: 10.3233/FI-2019-1777
Journal: Fundamenta Informaticae, vol. 165, no. 1, pp. 75-98, 2019
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]