Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Russian-Finnish Symposium in Discrete Mathematics
Article type: Research Article
Authors: Itsykson, Dmitry | Sokolov, Dmitry
Affiliations: Steklov Institute of Mathematics at St. Petersburg, 27 Fontanka, St.Petersburg, 191023, Russia. [email protected], [email protected]
Note: [] The work is partially supported by the Ministry of education and science of Russian Federation, project 8216, the president grants MK-4108.2012.1, by RFBR grants 12-01-31239 mol_a and by RAS Program for Fundamental Research. Address for correspondence: Steklov Institute of Mathematics at St. Petersburg, 27 Fontanka, St.Petersburg, 191023, Russia
Note: [] The work is partially supported by the Ministry of education and science of Russian Federation, project 8216, the president grants MK-4108.2012.1, by RFBR grants 12-01-31239 mol a and by RAS Program for Fundamental Research.
Abstract: In this paper we study heuristic proof systems and heuristic non-deterministic algorithms. We give an example of a language Y and a polynomial-time samplable distribution D such that the distributional problem (Y, D) belongs to the complexity class HeurNP but Y ∉ NP if NP ≠ coNP, and (Y, D) ∉ HeurBPP if (NP,PSamp) $\nsubseteq$ HeurBPP. For a language L and a polynomial q we define the language padq(L) composed of pairs (x, r) where x is an element of L and r is an arbitrary binary string of length at least q(|x|). If $D = \{D_n\}^\infty_{n=1}$ is an ensemble of distributions on strings, let D × Uq be a distribution on pairs (x, r), where x is distributed according to Dn and r is uniformly distributed on strings of length q(n). We show that for every language L in AM there is a polynomial q such that for every distribution D concentrated on the complement of L the distributional problem (padq(L), D × Uq) has a polynomially bounded heuristic proof system. Since graph non-isomorphism (GNI) is in AM, the above result is applicable to GNI.
Keywords: heuristic computation, proof systems, non-deterministic algorithm, Arthur-Merlin games
DOI: 10.3233/FI-2014-1036
Journal: Fundamenta Informaticae, vol. 132, no. 1, pp. 113-129, 2014
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]