Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Cognitive Informatics and Computational Intelligence: Theory and Applications
Article type: Research Article
Authors: Pal, Sankar K. | Chakraborty, Debarati
Affiliations: Center for Soft Computing Research, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India. [email protected]; [email protected]
Note: [] Address for correspondence: Center for Soft Computing Research, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India
Abstract: This paper presents a novel methodology for tracking a single moving object in a video sequence applying the concept of rough set theory. The novelty of this technique is that it does not consider any prior information about the video sequence unlike many existing techniques. The first target model is constructed using the median filtering based foreground detection technique and after that the target is reconstructed in every frame according to the rough set based feature reduction concept incorporating a measure of indiscernibility instead of indiscernibility matrix. The area of interest is initially defined roughly in every frame based on the object shift in the previous frames, and after reduction of redundant features the object is tracked. The measure of indiscernibility of a feature is defined based on its degree of belonging (DoB) to the target. Three quantitative indices based on rough sets, feature similarity and Bhattacharya distance are proposed to evaluate the performance of tracking and detect the mis-tracked frames in the process of tracking to make those corrected. Unlike many existing measures, the proposed ones do not require to know the ground truth or trajectory of the video sequence. Extensive experimental results are given to demonstrate the effectiveness of the method. Comparative performance is demonstrated both visually and quantitatively.
Keywords: Rough Set, Unsupervised Tracking, Feature Reduction, Bhattacharya distance, moving object segmentation
DOI: 10.3233/FI-2012-825
Journal: Fundamenta Informaticae, vol. 124, no. 1-2, pp. 63-90, 2013
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]